Analysis of articicial intelligence in the diagnosis of carious in interproximal radiographs: A literature review.
PDF (Português (Brasil))

Keywords

Artificial Intelligence
Diagnosis
Dental Caries
Bitewing Radiography
Dentistry

How to Cite

de Araújo Martins, C., Miranda Rodrigues, J. H., Ferreira Frade Soares, L., Gomes Soares Pires, L., Rabelo Nogueira, B., Araújo Brito Santos Lopes, M., & Martins Oliveira, S. (2025). Analysis of articicial intelligence in the diagnosis of carious in interproximal radiographs: A literature review. Brazilian Journal of Implantology and Health Sciences, 7(10), 751–769. https://doi.org/10.36557/2674-8169.2025v7n10p751-769

Abstract

This study aimed to explore the application of artificial intelligence in the early diagnosis of carious lesions in interproximal radiographs, analyzing its potential to optimize diagnostic accuracy and efficiency in dental practice. The methodology employed consisted of a comprehensive literature review, focused on the analysis of studies addressing the use of artificial intelligence, with an emphasis on Convolutional Neural Networks (CNNs), for the detection and classification of carious lesions in interproximal radiographs. The reviewed results demonstrated that AI, especially models such as U-Net, YOLO, and DenseNet121, offers an effective tool for caries detection, often surpassing the sensitivity and standardization of human diagnosis, particularly in the early stages of the disease. The identified benefits include faster and more accurate diagnoses, optimization of clinical time, and the possibility of less invasive interventions. However, challenges were observed related to the necessity and reliability of results (false positives and negatives), ethical and regulatory aspects, and professional resistance. Artificial intelligence represents a significant advance in caries diagnosis, with the potential to transform dentistry by acting as a complementary tool that assists and enhances the work of the dental surgeon. To fully realize this potential, continuous research and development efforts, improvements in data quality, and careful integration of technology with clinical expertise are essential, with a view to promoting oral health and improving patients' quality of life.

https://doi.org/10.36557/2674-8169.2025v7n10p751-769
PDF (Português (Brasil))

References

ABBOTT. L. P. et al. Artificial intelligence platforms in dental imaging: A systematic review and meta-analysis. Oral surgery, Oral Medicine, Oral pathology and Oral Radiology, v. 139, n.3, p. 305-314, 2025. Disponível em: https://www.sciencedirect.com/science/artcle/pii/S1532338224001271 . Acesso em: 20/ 09/2025.

AL SAFFAN. Abdulrahman D. et al. Current. approaches to diagnosis of early proximal carious lesion: a literature Review. Cureus, v. 15, n. 8, e43489, 2023.

ALI, M. et al. Artificial intelligence in dental radiology: a narrative review. Annals of medicine e surgery, v. 87, n. 4, p. 2212-2217, 27 mar. 2025. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC11981376/. Acesso em: 18/ 09/ 2025.

ALVES. V. P. et al. Efetividade da inteligência artificial em detectar cárie dentária em exames interproximais: uma revisão sistemática com metanálise. REVISTA DO CROMG, v. 22, n. Supl. 4, 2024. Disponível em: https://revista.cromg.org.br/index.php/rcromg/article/view/490. Acesso em: 20/ 09/ 2025.

BAYATI. M. et al. Advanced AI-driven detection of interproximal caries in bitewing radiographs via YOLOv8. Scientific Reports, v. 15, n. 1, p. 1-10, 2025. Disponível em: https://pmc.ncbi.nlm.gov/articles/PMC11806056/. Acesso em: 20/ 09/ 2025.

BAYRAKTAR, M.; AYAN, S. Convolutional neural networks of caries detection in dental panoramic radiographs. Journal of Dental Research, v. 98, n. 2, p 102- 109, 2021.

BRASIL. Ministério da saúde. Cárie é uma das doenças crônicas não transmissíveis mais prevalentes no mundo. Brasília, DF: Ministério da saúde, 2022. Publicado em: 1 nov. 2022. Atualizado em: 3 nov. 2022. Disponível em: https://www.gov.br/saude/pt-br/assuntos/noticias/2022/novembro/carie-e-uma-das-doenças-cronicas-nao-transmissiveis-mais-prevalentes-no-mundo. Acesso em: 20/ 09/ 2025.

BRAZ. Ana Caroline da Rocha; Canedo, Edna Dias. Mapping LGPD Principles to Ethical Principles in the Context of Artificial Intelligence. 2025. DOI: 10.5753/wics.2025.7160. Disponível em : https://sol.sbc.org.br/index.php/wics/article/view/35931/15077. Acesso em: 18/ 09/ 2025.

CABRAL, Bianca Maria de Souza et al. Benefícios da inteligência artificial na identificação de cárie dentária: revisão integrativa. Research, Society and Development, v, 10, n. 2, p. e18310212117, 2021. Disponível em: https://rsdjoutnal.org.rsd/article/download/12117/11119/7355. Acesso em: 22/ 08/2025.

CABRAL. B. M. S. et al. Benefícios da inteligência artificial na identificação de cárie dentária: revisão integrativa. Research, Society and Development, v. 10, p. e12101018659-e12101018659, 2021. Disponível em: https://rsdjournal.org/rsd/article/dowload/12117/11119/163825. Acesso em: 20/ 09/ 2025.

CANTU, R. et al. Deep learning for proximal caries detection on bitewing x-ray-HUNT 4 Oral Health Study. arXiv preprint arXiv:2006.0000,2020.

CARVALHO. D. K. et al. Benefícios da inteligência artificial para o diagnóstico precoce da cárie dentária: Revisão integrativa. Research, Society and Development, v. 10, n. 4, p. e43210413083, 2021. DOI: 10333448/rsd-v10i4.13083. Disponível em: https://rsd journal.org/index.php/rsd/article/view/13083. Acesso em 20/ 09/ 2025.

DOURADO, A.; et al. The regulation of artificial intelligence for health in Brazil: considerations and perspectives. Revista de Saúde Pública, v. 56, art. 80, 2022. Disponível em:https://www.scielosp.org/articles/rsp/2022.v56/80/. Acesso em: 18/09/ 2025.

GIMENEZ. Thais; TEDESCO, Tamara Kerber; BRAGA, Mariana Minatel et al. What is the most accurate method for detecting caries lesions? A systematic review and meta-analysis. Community Dentistry and Oral Epidemiology, v. 49, n. 3, p. 256-265. 2021.

LEE, J. H. et al. Deep learning for caries detection in dental panoramic radiographs. Journal of Dental Research, v. 97, n. 1, p. 107-113, 2020.

LIAN, J. et al. Deep learning for caries detection in panoramic radiographs. Journal of Dental Research, v. 67, n. 1, p. 114-121, 2021.

LOPES, P. C.; GOMES. A. T. P. C.; K. et al. Unlocking the potential of probiotic administration in caries management: a systematic review. BMC Oral Health, v. 24, art. 216, 2024.

LUKE, Alexander Maniangat; REZALLAH, Nader Nabil Fouad et al. Accuracy of artificial intelligence in caries detection: a Systematic review and meta-analysis. Head & Face Medicine, v. 21, art. 24, 2025. Disponível em : https://head-face-med.biomedcentral.com/articles/10.1186/s13005-025-00136-8. Acesso em: 18/ 09/ 2025.

MATHUR, Anshul; DHILLON, J. K. Caries: a review. Journal of Clinical and Diagnostic Research, v. 12, n. 11, p. 1-4, 2020.

MOREIRA. B. N.; SILVA. F. R. SOARES. C. J. et al. Effect of composite radiopacity and margin location of the restoration on the diagnosis of secondary caries. Brazilian Dental Journal, v. 35, p. e-1624, 2024.

PÉREZ E FRUTOS, Javier; HOLDEN HELLAND, Ragnhild; DESAI, Shreya; et al. AI-Dentify: deep learning for proximal caries detection on bitewing x-ray-HUNT4 Oral Health Study, BMC Oral Health, v. 24 art. 344, 2024. DOI: 10.1186/s12903-024-04129-0.

PÉREZ E FRUTOS, Javier; HOLDEN HELLAND, Ragnhild; DESAI, Shreya; etal. AI-Dentify: deep learning for proximal caries detection on bitewing x-ray-HUNT4 Oral Health Study, BMC Oral Health, v. 24 art. 344, 2024. DOI: 10.1186/s12903-024-04129-0.

PRADOS-PRIVADO, M. et al. Inteligência artificial na detecção de cárie: uma revisão sistemática. Revista Brasileira de Odontologia, v. 27, n. 3, p. 1-10, 2021.

SILVA. Fabyanne Cristine de Castro et al. Desmineralização Dentária: Avaliação “in vitro” de corticoides pediátricos. Research, Society and Development, v. 14, n. 6, e5414649002, 2025. Disponível em: https;//rsdjournal.org/rsd/article/dowload/49002/38414/501741. Acesso em: 18/ 09/ 2025.

WORLD HEALTH ORGANIZATION. Oral health. Geneva: WHO,2025. Disponível em: https://www.who.int/news-room/fact-sheets/detail/oral-health. Acesso em: 20/ 09/ 2025.

WU, J. et al. Artificial intelligence for dental caries detection on radiographs: a systematic review. BMC Oral Health, v. 24, n. 1, p. 1067, 2024. DOI: https://doi.org/10186/s12903-024-04046-7 Acesso em: 28/08/2025.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Claudio de Araújo Martins, João Henrique Miranda Rodrigues, Leandro Ferreira Frade Soares, Lilian Gomes Soares Pires, Básia Rabelo Nogueira, Matheus Araújo Brito Santos Lopes, Sanmyo Martins Oliveira

Downloads

Download data is not yet available.
1 1