Protein dysregulation associated with Alzheimer's disease and its clinical diagnosis
PDF (Português (Brasil))

Keywords

Amyloid beta-peptides
Tau proteins
Alzheimer disease

How to Cite

Oliveira Guimarães, L., de Fatima da Conceição Veríssimo Lopes, J., Nascimento da Silveira Gomes, R., dos Santos Machado, M., de Souza Borges, A., Coutinho Alcazar, M., de Andrade Lopes, Y. C., Vinagre Gruppi, G., & Lima da Silva, G. (2024). Protein dysregulation associated with Alzheimer’s disease and its clinical diagnosis. Brazilian Journal of Implantology and Health Sciences, 6(10), 450–471. https://doi.org/10.36557/2674-8169.2024v6n10p450-471

Abstract

Alzheimer's Disease (AD) is a neurodegenerative condition characterized by the accumulation of beta-amyloid and tau proteins, leading to cognitive decline and dementia. Lysosomal system dysfunction is a critical factor in the pathogenesis of the disease, contributing to the buildup of misfolded proteins. Early detection of AD is crucial, and biomarkers such as tau protein and Aβ have shown promise for diagnosis in the early stages. Thus, the objective of this work is to explore the pathophysiology of AD, with an emphasis on beta-amyloid and tau proteins, and to discuss the diagnostic and therapeutic implications associated with these biomolecules. The study methodology consisted of an integrative literature review, focusing on AD and its pathological mechanisms. Initially, searches were conducted in the PubMed and BVS databases, resulting in the identification of 16 articles on PubMed and 173 on BVS. After applying filters related to language (English and Portuguese), full-text availability, and publication period (last 10 years), 14 articles were selected for inclusion in the review. The results indicate that the deposition of β-amyloid plaques and neurofibrillary tangles are hallmark pathological features of AD. γ-secretase, a crucial enzyme in the processing of amyloid precursor protein, plays a central role in the formation of β-amyloid peptides, which are associated with neurodegeneration. The discussion emphasizes the importance of therapeutic interventions targeting these proteins to slow the progression of the disease. Therefore, the need for new diagnostic and therapeutic strategies based on a deeper understanding of AD’s cellular and molecular mechanisms is highlighted, aiming to improve the quality of life for patients and provide more effective management of the condition.

https://doi.org/10.36557/2674-8169.2024v6n10p450-471
PDF (Português (Brasil))

References

ALZHEIMER’S ASSOCIATION REPORT. 2020 Alzheimer's Disease Facts and Figures. Alzheimer's & Dementia: The Journal of the Alzheimer’s Association, [s. l.], v. 16, n. 3, p. 391-460, 2020. DOI: 10.1002/alz.12068.

ALZHEIMER’S ASSOCIATION REPORT. 2022 Alzheimer’s Disease Facts and Figures. Alzheimer's & Dementia: The Journal of the Alzheimer’s Association, [s. l.], v. 18, n. 4, p. 700-789, mar. 2022. DOI: 10.1002/alz.12638.

ANJOS, Karla Ferraz dos et al. Homem cuidador familiar de idosa com doença de Alzheimer. Saúde e Pesquisa, Maringá, v. 10, n. 2, p. 317-324, maio/ago. 2017. DOI: 10.177651/1983-1870.2017v10n2p317-324.

ARRANZ, Javier et al. Diagnostic performance of plasma pTau 217, pTau 181, Aβ 1–42 and Aβ 1–40 in the LUMIPULSE automated platform for the detection of Alzheimer disease. Research Square, [s. l.], dez. 2023. DOI: 10.21203/rs.3.rs-3725688/v1.

BREIJYEH, Zeinab; KARAMAN, Rafik. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, [s. l.], v. 25, n. 24, p. 5789, dez. 2020. DOI: 10.3390/molecules25245789.

BORDI, Matteo et al. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy, [s. l.], v. 12, n. 12, p. 2467-2483, dez. 2016. DOI: 10.1080/15548627.2016.1239003.

BURNS, Alistair; ILIFFE, Steve. Alzheimer’s disease. BMJ Clinical Research, [s. l.], v. 338, p. b158, fev. 2009. DOI: 10.1136/bmj.b158.

BUSCHE, Marc Aurel; KONNERTH, Arthur. Impairments of neural circuit function in Alzheimer’s disease. Philosophical Transactions of the Royal Society B: Biological Sciences, [s. l.], v. 371, n. 1700, p. 20150429, ago. 2016. DOI: 10.1098/rstb.2015.0429.

FARFARA, D. et al. Low-Level Laser Therapy Ameliorates Disease Progression in a Mouse Model of Alzheimer’s Disease. Journal of Molecular Neuroscience, [s. l.], v. 55, p. 430-436, 2015. DOI: 10.1007/s12031-014-0354-z.

GEIJSELAERS, Stefan L. C. et al. Association of Cerebrospinal Fluid (CSF) Insulin with Cognitive Performance and CSF Biomarkers of Alzheimer’s Disease. Journal of Alzheimer’s Disease, [s. l.], v. 61, n. 1, p. 309-320, nov. 2017. DOI: 10.3233/jad-170522.

HENEKA, Michael T. et al. Neuroinflammation in Alzheimer’s disease. The Lancet: Neurology, [s. l.], v. 14, n. 4, p. 388-405, abr. 2015. DOI: 10.1016/S1474-4422(15)70016-5.

HEPPNER, Frank L.; RANSOHOFF, Richard; BECHER, Burkhard. Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews. Neuroscience, [s. l.], v. 16, n. 6, p. 358-372, jun. 2015. DOI: 10.1038/nrn3880.

HUR, Ji-Yeun. γ-Secretase in Alzheimer’s disease. Experimental & Molecular Medicine, [s. l.], v. 54, p. 433-446, abr. 2022. DOI: 10.1038/s12276-022-00754-8.

JESSEN, Frank et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer’s Association, [s. l.], v. 10, n. 6, p. 844-852, nov. 2014. DOI: 10.1016/j.jalz.2014.01.001.

KARCH, Celeste M.; CRUCHAGA, Carlos; GOATE, Alison. Alzheimer’s Disease Genetics: From the bench to the clinic. Neuron, [s. l.], v. 83, n. 1, p. 11-26, jul. 2014. DOI: 10.1016/j.neuron.2014.05.041.

LANE, C. A.; HARDY, J.; SCHOTT, J. M. Alzheimer's disease. European Journal of Neurology, [s. l.], v. 25, n. 1, p. 59-70, set. 2017. DOI: 10.1111/ene.13439.

LI, Liping et al. Reduction of Tet2 exacerbates early stage Alzheimer’s pathology and cognitive impairments in 2×Tg-AD mice. Human Molecular Genetics, [s. l.], v. 29, n. 11, p. 1833-1852, jun. 2020. DOI: 10.1093/hmg/ddz282.

LIVINGSTON, Gill et al. Dementia prevention, intervention, and care. The Lancet, [s. l.], v. 390, n. 10113, p. 2673-2734, dez. 2017. DOI: 10.1016/S0140-6736(17)31363-6.

LOPEZ-RODRIGUEZ, Ana Belen et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, [s. l.], v. 17, n. 10, p. 1735-1755, out. 2021. DOI: 10.1002/alz.12341.

LUO, Shan; WANG, Yifei; HISATSUNE, Tatsuhiro. P2Y1 receptor and neuroinflammation. Neural Regeneration Research, [s. l.], v. 20, n. 2, p. 440-453, mai. 2024. DOI: 10.4103/NRR.NRR-D-23-02103.

MENDEZ, Mario F. Early-onset Alzheimer’s Disease and Its Variants. Continuum, Minneapolis, v. 25, n. 1, p. 34-51, fev. 2019. DOI: 10.1212/CON.0000000000000687.

MIAO, Yinglong; WOLFE, Michael S. Emerging structures and dynamic mechanisms of γ-secretase for Alzheimer’s disease. Neural Regeneration Research, [s. l.], v. 20, n. 1, p. 174-180, mar. 2024. DOI: 10.4103/NRR.NRR-D-23-01781.

MORMINO, Elizabeth C. et al. Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology, [s. l.], v. 87, n. 5, p. 481-488, ago. 2016. DOI: 10.1212/WNL.0000000000002922.

OJOPI, Elida P. Benquique; BERTONCINI, Alexandre Bruno; DIAS NETO, Emmanuel. Apolipoproteína E e a doença de Alzheimer. Archives of Clinical Psychiatry, São Paulo, v. 31, n. 1, p. 26-33, 2004. DOI: 10.1590/S0101-60832004000100005.

OSSENKOPPELE, Rik et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain, [s. l.], v. 139, n. 5, p. 1551-1567, maio 2016. DOI: 10.1093/brain/aww027.

OSSENKOPPELE, Rik; VAN DER KANT, Rik; HANSSON, Oskar. Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials. The Lancet Neurology, [s. l.], v. 21, n. 8, p. 726-734, ago. 2022. DOI: 10.1016/S1474-4422(22)00168-5.

PERROTIN, Audrey et al. Subjective cognitive decline in cognitively normal elders from the community or from a memory clinic: Differential affective and imaging correlates. Alzheimer's & Dementia: The Journal of the Alzheimer’s Association, [s. l.], v. 13, n. 5, p. 550-560, maio 2017. DOI: 10.1016/j.jalz.2016.08.011.

PROMTEANGTRONG, Chetsadaporn et al. Multimodality Imaging Approach in Alzheimer disease. Part I: Structural MRI, Functional MRI, Diffusion Tensor Imaging and Magnetization Transfer Imaging and Magnetization Transfer Imaging. Dementia & Neuropsychologia, [s. l.], v. 9, n. 4, p. 318-329, dez. 2015. DOI: 10.1590/1980-57642015DN94000318.

RABIN, Laura A.; SMART, Colette M.; AMARIGLIO, Rebecca E. Subjective Cognitive Decline in Preclinical Alzheimer's Disease. Annual Review of Clinical Psychology, [s. l.], v. 13, p. 369-396, maio 2017. DOI: 10.1146/annurev-clinpsy-032816-045136.

REITZ, Christiane; BRAYNE, Carol; MAYEUX, Richard. Epidemiology of Alzheimer disease. Nature Reviews Neurology, [s. l.], v. 7, n. 3, p. 137-152, mar. 2011. DOI: 10.1038/nrneurolo.2011.2.

RIEDEL, Brandlyn C.; THOMPSON, Paul M.; BRINTON, Roberta Diaz. Age, APOE and sex: Triad of risk of Alzheimer’s disease. The Journal of Steroid Biochemistry and Molecular Biology, [s. l.], v. 160, p. 134-147, jun. 2016. DOI: 10.1016/j.jsbmb.2016.03.012.

SCHILLING, Lucas Porcello et al. Diagnóstico da doença de Alzheimer: recomendações do Departamento Científico de Neurologia Cognitiva e do Envelhecimento da Academia Brasileira de Neurologia. Dementia & Neuropsychologia, [s. l.], v. 13, n. 3, Supl. 1, p. 25-39, set. 2022. DOI: 10.1590/1980-5764-DN-2022-S102PT.

SELKOE, Dennis J.; HARDY, John. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine, [s. l.], v. 8, n. 6, p. 595-608, jun. 2016. DOI: 10.15252/emmm.201606210.

SLOT, Rosalinde E. et al. Subjective cognitive decline and rates of incident Alzheimer's disease and non-Alzheimer's disease dementia. Alzheimer's & Dementia: The Journal of the Alzheimer’s Association, [s. l.], v. 15, n. 3, p. 465-476, mar. 2019. DOI: 10.1016/j.jalz.2018.10.003.

SPERLING, R. A. et al. Association of Factors With Elevated Amyloid Burden in Clinically Normal Older Individuals. JAMA Neurology, [s. l.]~, v. 77, n. 6, p. 735-745, 2020. DOI: 10.1001/jamaneurolog.2020.0387.

TIWARI, Sneham et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine, [s. l.], v. 14, p. 5541-5554, jul. 2019. DOI: 10.2147/IJN.S200490.

VAN MAURIK, Ingrid S. et al. Interpreting Biomarker Results in Individual Patients With Mild Cognitive Impairment in the Alzheimer’s Biomarkers in Daily Practice (ABIDE) Project. JAMA Neurology, [s. l.], v. 74, n. 12, p. 1481-1491, 2017. DOI: 10.1001/jamaneurol.2017.2712.

ZOTT, Benedikt et al. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science, Nova Iorque, v. 365, n. 6453, p. 559-565, ago. 2019. DOI: 10.1126/science.aay0198.

ZENG, Junjian et al. T cell infiltration mediates neurodegeneration and cognitive decline in Alzheimer's disease. Neurobiology of Disease, [s. l.], v. 193. p. 106461, abr. 2024. DOI: 10.1016/j.nbd.2024.106461.

ZUNIGA, Gabrielle et al. Pathogenic tau induces an adaptive elevation in mRNA translation rate at early stages of disease. Aging Cell, [s. l.], v. 00, p. e14245, jun. 2024. DOI: 10.1111/acel.14245.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Larissa Oliveira Guimarães, Juliana de Fatima da Conceição Veríssimo Lopes, Rebecca Nascimento da Silveira Gomes, Mariana dos Santos Machado, Alex de Souza Borges, Marcia Coutinho Alcazar, Yoná Christina de Andrade Lopes, Giovanna Vinagre Gruppi, Gabriela Lima da Silva