Bone repair induced by different bone graft substitutes in critical-sized defects in rat calvaria.
PDF (Português (Brasil))

Keywords

Histology; x-ray microtomography; bone regeneration; bone substitutes.

How to Cite

Tinajero ARONI , M. A. ., da COSTA NETO , P. F. ., Pimentel Lopes de OLIVEIRA , G. J. ., Chiérici MARCANTONI, R. A. ., & MARCANTONIO JUNIOR , E. . (2020). Bone repair induced by different bone graft substitutes in critical-sized defects in rat calvaria. Brazilian Journal of Implantology and Health Sciences, 2(9), 28–44. https://doi.org/10.36557/2674-8169.2020v2n9p28-44

Abstract

Introduction: The use of bone substitutes in grafting procedures as an alternative of the use of autogenous bone graft has been indicated, however, the direct comparison between these biomaterials has been little explored.

Objective: To evaluate the effect of different osteoconductive bone substitutes on the bone repair in critical-sized defects (CSDs) in rat calvaria.

Material and method: One CSD with an 8 mm diameter was made in each of the 40 rats used in this study. The animals were randomly allocated into 5 groups (n=8), according to the type of bone substitute used to fill the CSD: COA (Coagulum); AUT (autogenous bone); DBB (deproteinized bovine bone graft); HA/TCP (biphasic ceramic composed of hydroxyapatite and β-phosphate tricalcium); and TCP (β-phosphate tricalcium). A microtomographic analysis was performed to evaluate the remaining defect linear length (DLL) of the CSD and the volume of the mineralized tissues (MT) within the CSD at 3, 7, 15 and 30 days after the surgical procedure. In addition, a histometric analysis was performed to evaluate the composition of the repaired bone tissue (% Bone and % Biomaterial) at the 30-day period.

Result: It was shown that the COA had the lowest DLL and MT within the CSD. In addition, the COA presented the highest % of bone in CSD. The DBB had a higher MT and a higher % of bone substitute particles in the CSD than the AUT and TCP groups. The DBB and AUT groups presented higher % of bone in the CSD than the TCP group.

Conclusion: The use of the DBB promoted a better pattern of bone volume gain and formation compared to TCP and HA / TCP but was biologically inferior to the AUT.

https://doi.org/10.36557/2674-8169.2020v2n9p28-44
PDF (Português (Brasil))

References

1- Freitas RM, Susin C, Tamashiro WM, Souza JAC, Marcantonio C, Wikesjö UM, et al. Histological analysis and gene expression profile following augmentation of the anterior maxilla using rhBMP-2/ACS versus autogenous bone graft. J Clin Periodontol. 2016 Dec;43(12):1200-7. http://dx.doi.org/10.1111/jcpe.12601. PMid:27440671. [ Links ]

2- Friedrich JB, Moran SL, Bishop AT, Shin AY. Free vascularized fibula grafts for salvage of failed oncologic long bone reconstruction and pathologic fractures. Microsurgery. 2009;29(5):385-92. http://dx.doi.org/10.1002/micr.20624. PMid:19296529. [ Links ]

3- Hanke A, Bäumlein M, Lang S, Gueorguiev B, Nerlich M, Perren T, et al. Long-term radiographic appearance of calcium-phosphate synthetic bone grafts after surgical treatment of tibial plateau fractures. Injury. 2017 Dec;48(12):2807-13. http://dx.doi.org/10.1016/j.injury.2017.10.030. PMid:29096930. [ Links ]

4- Spin-Neto R, Stavropoulos A, Coletti FL, Faeda RS, Pereira LA, Marcantonio E Jr. Graft incorporation and implant osseointegration following the use of autologous and fresh-frozen allogeneic block bone grafts for lateral ridge augmentation. Clin Oral Implants Res. 2014 Feb;25(2):226-33. http://dx.doi.org/10.1111/clr.12107. PMid:23346871. [ Links ]

5- Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol. 2014;7(Suppl 2):S203-17. PMid:24977256. [ Links ]

6- Zijderveld SA, Zerbo IR, van den Bergh JP, Schulten EA, ten Bruggenkate CM. Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants. 2005 May-Jun;20(3):432-40. PMid:15973955. [ Links ]

7- Silva LF, Reis ENRC, Barbara TA, Bonardi JP, Garcia IR, Carvalho PSP, et al. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP). Acta Histochem. 2017 Jul;119(6):624-31. http://dx.doi.org/10.1016/j.acthis.2017.07.003. PMid:28732677. [ Links ]

8- Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res. 2008 Aug;19(8):796-803. http://dx.doi.org/10.1111/j.1600-0501.2008.01565.x. PMid:18705811. [ Links ]

9- Wang F, Zhou W, Monje A, Huang W, Wang Y, Wu Y. Influence of healing period upon bone turn over on maxillary sinus floor augmentation grafted solely with deproteinized bovine bone mineral: a prospective human histological and clinical trial. Clin Implant Dent Relat Res. 2017 Apr;19(2):341-50. http://dx.doi.org/10.1111/cid.12463. PMid:27862924. [ Links ]

10- Uzeda MJ, de Brito Resende RF, Sartoretto SC, Alves ATNN, Granjeiro JM, Calasans-Maia MD. Randomized clinical trial for the biological evaluation of two nanostructured biphasic calcium phosphate biomaterials as a bone substitute. Clin Implant Dent Relat Res. 2017 Oct;19(5):802-11. http://dx.doi.org/10.1111/cid.12516. PMid:28703478. [ Links ]

11- Carmagnola D, Abati S, Celestino S, Chiapasco M, Bosshardt D, Lang NP. Oral implants placed in bone defects treated with Bio-Oss, Ostim-Paste or PerioGlas: an experimental study in the rabbit tibiae. Clin Oral Implants Res. 2008 Dec;19(12):1246-53. http://dx.doi.org/10.1111/j.1600-0501.2008.01584.x. PMid:19040439. [ Links ]

12- Martinez A, Franco J, Saiz E, Guitian F. Maxillary sinus floor augmentation on humans: Packing simulations and 8 months histomorphometric comparative study of anorganic bone matrix and β-tricalcium phosphate particles as grafting materials. Mater Sci Eng C Mater Biol Appl. 2010 Jun;30(5):763-9. http://dx.doi.org/10.1016/j.msec.2010.03.012. PMid:21625341. [ Links ]

13- Trombelli L, Franceschetti G, Stacchi C, Minenna L, Riccardi O, Di Raimondo R, et al. Minimally invasive transcrestal sinus floor elevation with deproteinized bovine bone or β-tricalcium phosphate: a multicenter, double-blind, randomized, controlled clinical trial. J Clin Periodontol. 2014 Mar;41(3):311-9. http://dx.doi.org/10.1111/jcpe.12210. PMid:24325663. [ Links ]

14- Araújo MG, Lindhe J. Ridge preservation with the use of Bio-Oss collagen: a 6-month study in the dog. Clin Oral Implants Res. 2009 May;20(5):433-40. http://dx.doi.org/10.1111/j.1600-0501.2009.01705.x. PMid:19522974. [ Links ]

15- Araújo MG, Sonohara M, Hayacibara R, Cardaropoli G, Lindhe J. Lateral ridge augmentation by the use of grafts comprised of autologous bone or a biomaterial. An experiment in the dog. J Clin Periodontol. 2002 Dec;29(12):1122-31. http://dx.doi.org/10.1034/j.1600-051X.2002.291213.x. PMid:12492915. [ Links ]

16- Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res. 2003 Apr;14(2):137-43. http://dx.doi.org/10.1034/j.1600-0501.2003.140201.x. PMid:12656871. [ Links ]

17- Arruda T, Sukekava F, de Souza AB, Rasmusson L, Araújo MG. Early healing in alveolar sockets grafted with titanium granules. An experimental study in a dog model. J Biomed Mater Res A. 2013 Jul;101(7):1971-6. http://dx.doi.org/10.1002/jbm.a.34501. PMid:23225833. [ Links ]

18- Wang X, Friis TE, Masci PP, Crawford RW, Liao W, Xiao Y. Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing. Sci Rep. 2016 Oct;6:35645. http://dx.doi.org/10.1038/srep35645. PMid:27767056. [ Links ]

19- Yang J, Zhou Y, Wei F, Xiao Y. Blood clot formed on rough titanium surface induces early cell recruitment. Clin Oral Implants Res. 2016 Aug;27(8):1031-8. http://dx.doi.org/10.1111/clr.12672. PMid:26332946. [ Links ]

20- Lindhe J, Araújo MG, Bufler M, Liljenberg B. Biphasic alloplastic graft used to preserve the dimension of the edentulous ridge: an experimental study in the dog. Clin Oral Implants Res. 2013 Oct;24(10):1158-63. http://dx.doi.org/10.1111/j.1600-0501.2012.02527.x. PMid:22804845. [ Links ]

21- Kato E, Lemler J, Sakurai K, Yamada M. Biodegradation property of beta-tricalcium phosphate-collagen composite in accordance with bone formation: a comparative study with Bio-Oss Collagen® in a rat critical-size defect model. Clin Implant Dent Relat Res. 2014 Apr;16(2):202-11. http://dx.doi.org/10.1111/j.1708-8208.2012.00467.x. PMid:22809239. [ Links ]

22- Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. J Biomed Mater Res B Appl Biomater. 2014 Jan;102(1):80-8. http://dx.doi.org/10.1002/jbm.b.32984. PMid:23852942. [ Links ]

23- Sawada K, Nakahara K, Haga-Tsujimura M, Iizuka T, Fujioka-Kobayashi M, Igarashi K, et al. Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog. Odontology. 2018 Oct;106(4):398-407. http://dx.doi.org/10.1007/s10266-018-0352-7. PMid:29557992. [ Links ]

24- Jensen SS, Broggini N, Hjørting-Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 2006 Jun;17(3):237-43. http://dx.doi.org/10.1111/j.1600-0501.2005.01257.x. PMid:16672017. [ Links ]

25- Simunek A, Kopecka D, Somanathan RV, Pilathadka S, Brazda T. Deproteinized bovine bone versus beta-tricalcium phosphate in sinus augmentation surgery: a comparative histologic and histomorphometric study. Int J Oral Maxillofac Implants. 2008 Sep-Oct;23(5):935-42. PMid:19014165. [ Links ]

26- Mordenfeld A, Lindgren C, Hallman M. Sinus floor augmentation using Straumann® BoneCeramic™ and Bio-Oss® in a split mouth design and later placement of implants: a 5-year report from a longitudinal study. Clin Implant Dent Relat Res. 2016 Oct;18(5):926-36. http://dx.doi.org/10.1111/cid.12374. PMid:26358740. [ Links ]

27- Starch-Jensen T, Aludden H, Hallman M, Dahlin C, Christensen AE, Mordenfeld A. A systematic review and meta-analysis of long-term studies (five or more years) assessing maxillary sinus floor augmentation. Int J Oral Maxillofac Surg. 2018 Jan;47(1):103-16. http://dx.doi.org/10.1016/j.ijom.2017.05.001. PMid:28545806. [ Links ]

28- Vajgel A, Mardas N, Farias BC, Petrie A, Cimões R, Donos N. A systematic review on the critical size defect model. Clin Oral Implants Res. 2014 Aug;25(8):879-93. http://dx.doi.org/10.1111/clr.12194. PMid:23742162. [ Links ]

29- Aroni, Mauricio Andrés Tinajero, et al. "Bone repair induced by different bone graft substitutes in critical-sized defects in rat calvaria." Revista de Odontologia da UNESP 48 (2019).

Este artigo é uma cópia com adaptação para o português do Artigo Original "Aroni, Mauricio Andrés Tinajero, et al. "Bone repair induced by different bone graft substitutes in critical-sized defects in rat calvaria." Revista de Odontologia da UNESP 48 (2019)." Esta Cópia com adaptação para o Português segue os preceitos Creative Commons CC BY 4.0 ( https://creativecommons.org/licenses/by/4.0/deed.pt_BR ) disponibilizado pelo periódico responsável pela publicação original ( https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-25772019000100410 )

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Mauricio Andrés Tinajero ARONI , Paulo Firmino da COSTA NETO , Guilherme José Pimentel Lopes de OLIVEIRA , Rosemary Adriana Chiérici MARCANTONI, Elcio MARCANTONIO JUNIOR