Biomarcadores prognósticos e preditivos em sepse infantil: inovações e aplicações clínicas
PDF

Palavras-chave

Biomarcadores; Pediatria; Sepse.

Como Citar

Frazão, L. F. N. ., Ribeiro Schettert, I., Mansur Zambaldi, L. M., Ramos Muniz Braga , G., Martins de Lima , A. B., Ribeiro , M. dos S., Machado Ribeiro, S. B., Figueiredo Zaccara, F. de, Bernardes Cabral, B. H., Rodrigues Alves, M. Z., & Palmério, M. E. G. (2025). Biomarcadores prognósticos e preditivos em sepse infantil: inovações e aplicações clínicas. Brazilian Journal of Implantology and Health Sciences, 7(1), 1587–1605. https://doi.org/10.36557/2674-8169.2025v7n1p1587-1605

Resumo

O artigo possui como objetivo expor os principais biomarcadores de sepse pediátrica e apontar suas vantagens no prognóstico dos afetados e como objetivo secundários, demonstrar o Modelo de Risco de Biomarcadores de Sepse Pediátrica (PERSEVERE).  Trata-se de uma revisão narrativa de caráter crítico e analítico, na  pesquisa  sobre  os principais  conceitos  no  que tange os biomarcadores de sepse pediátrica. Foi  realizada  uma  revisão  de  artigos  nas  bases  de  dados   Scientific  Electronic  Library  Online (SciELO) e PubMed, com os seguintes Descritores em Ciências  da  Saúde  (DeCS): Biomarcadores; Pediatria; Sepse. A mortalidade associada à sepse permanece um desafio significativo para a saúde pública infantil global. Estimar de forma confiável o risco basal de mortalidade em casos de sepse pediátrica representa uma forma importante de enriquecimento prognóstico. O enriquecimento prognóstico é essencial para diversas áreas, incluindo a tomada de decisões clínicas, a alocação eficiente de recursos, os esforços para melhoria da qualidade do atendimento e a pesquisa. Embora diversos biomarcadores tenham sido avaliados para estimar o risco de desfechos desfavoráveis em sepse, poucos foram validados com rigor suficiente para serem adotados clinicamente como estratégias eficazes de enriquecimento prognóstico. O uso de biomarcadores para identificar pacientes com sepse continua sendo uma área de pesquisa amplamente reconhecida e de grande importância. No entanto, uma vertente igualmente relevante, embora menos enfatizada, é a descoberta e o desenvolvimento de biomarcadores voltados para o enriquecimento prognóstico e preditivo em pacientes com sepse. Nos últimos anos, essa área tem avançado significativamente, especialmente no contexto pediátrico. 



https://doi.org/10.36557/2674-8169.2025v7n1p1587-1605
PDF

Referências

WEISS, S. L. et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatric Critical Care Medicine, v. 21, p. e52–e106, 2020.

FERNANDEZ-CARBALLO, L.; ESCADAFAL, C.; MACLEAN, E.; KAPASI, A. J.; DITTRICH, S. Distinguishing bacterial versus non-bacterial causes of febrile illness - a systematic review of host biomarkers. Journal of Infection, v. 82, p. 1–10, 2021.

SWEENEY, T. E. et al. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Science Translational Medicine, v. 7, p. 287ra271, 2015.

SWEENEY, T. E.; KHATRI, P. Comprehensive validation of the FAIM3:PLAC8 ratio in time-matched public gene expression data. American Journal of Respiratory and Critical Care Medicine, v. 192, p. 1260–1261, 2015.

ANDRES-TERRE, M. et al. Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses. Immunity, v. 43, p. 1199–1211, 2015.

SWEENEY, T. E.; WONG, H. R.; KHATRI, P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Science Translational Medicine, v. 8, p. 346ra391, 2016.

MAYHEW, M. B. et al. A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections. Nature Communications, v. 11, p. 1177, 2020.

DUCHARME, J. et al. A multi-mRNA host-response molecular blood test for the diagnosis and prognosis of acute infections and sepsis: proceedings from a clinical advisory panel. Journal of Personalized Medicine, v. 10, p. 266, 2020.

THAIR, S. et al. Gene expression-based diagnosis of infections in critically ill patients - prospective validation of the sepsis metascore in a longitudinal severe trauma cohort. Critical Care Medicine, 2021.

WEISS, S. L. et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. American Journal of Respiratory and Critical Care Medicine, v. 191, p. 1147, 2015.

FLEISCHMANN, C. et al. Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis. Archives of Disease in Childhood, Online ahead of print, 2021.

RUDD, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, v. 395, p. 200–211, 2020.

PRESCOTT, H. C.; CALFEE, C. S.; THOMPSON, B. T.; ANGUS, D. C.; LIU, V. X. Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design. American Journal of Respiratory and Critical Care Medicine, v. 194, p. 147–155, 2016.

CONWAY, S. R.; WONG, H. R. Biomarker panels in critical care. Critical Care Clinics, v. 36, p. 89–104, 2020.

SAMPSON, D. et al. Blood transcriptomic discrimination of bacterial and viral infections in the emergency department: a multi-cohort observational validation study. BMC Medicine, v. 18, p. 185, 2020.

WONG, H. R. et al. The pediatric sepsis biomarker risk model. Critical Care, v. 16, p. R174, 2012.

WONG, H. R. et al. Testing the prognostic accuracy of the updated pediatric sepsis biomarker risk model. PLOS ONE, v. 9, e86242, 2014.

WONG, H. R. et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers. PERSEVERE-XP. American Journal of Respiratory and Critical Care Medicine, v. 196, p. 494–501, 2017.

WONG, H. R. Pediatric sepsis biomarkers for prognostic and predictive enrichment. Pediatric Research, v. 91, n. 2, p. 283-288, 2022.

KAPLAN, J. M.; WONG, H. R. Biomarker discovery and development in pediatric critical care medicine. Pediatric Critical Care Medicine, v. 12, p. 165–173, 2011.

WONG, H. R. et al. Prospective clinical testing and experimental validation of the Pediatric Sepsis Biomarker Risk Model. Science Translational Medicine, v. 11, eaax9000, 2019.

WONG, H. R. et al. Biomarkers for estimating risk of hospital mortality and long-term quality-of-life morbidity after surviving pediatric septic shock: a secondary analysis of the Life After Pediatric Sepsis Evaluation investigation. Pediatric Critical Care Medicine, v. 22, p. 8–15, 2021.

SWEENEY, T. E. et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nature Communications, v. 9, p. 694, 2018.

BANERJEE, S.; MOHAMMED, A.; WONG, H. R.; PALANIYAR, N.; KAMALESWARAN, R. Machine learning identifies complicated sepsis course and subsequent mortality based on 20 genes in peripheral blood immune cells at 24 h post-ICU admission. Frontiers in Immunology, v. 12, p. 592303, 2021.

MANRIQUE-CABALLERO, C. L.; DEL RIO-PERTUZ, G.; GOMEZ, H. Sepsis-associated acute kidney injury. Critical Care Clinics, v. 37, p. 279–301, 2021.

STANSKI, N. L. et al. Severe acute kidney injury is independently associated with mortality in children with septic shock. Intensive Care Medicine, v. 46, p. 1050–1051, 2020.

STANSKI, N. L. et al. PERSEVERE biomarkers predict severe acute kidney injury and renal recovery in pediatric septic shock. American Journal of Respiratory and Critical Care Medicine, v. 201, p. 848–855, 2020.

JACOBS, L. et al. The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) biomarkers predict clinical deterioration and mortality in immunocompromised children evaluated for infection. Scientific Reports, v. 9, p. 424, 2019.

DEMERLE, K. M. et al. Sepsis subclasses: a framework for development and interpretation. Critical Care Medicine, v. 49, p. 748–759, 2021.

DAVENPORT, E. E. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respiratory Medicine, v. 4, p. 259–271, 2016.

BURNHAM, K. L. et al. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. American Journal of Respiratory and Critical Care Medicine, v. 196, p. 328–339, 2017.

SCICLUNA, B. P. et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respiratory Medicine, v. 5, p. 816–826, 2017.

SWEENEY, T. E. et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Critical Care Medicine, v. 46, p. 915–925, 2018.

IGLESIAS, J. et al. A 33-mRNA classifier is able to produce inflammopathic, adaptive, and coagulopathic endotypes with prognostic significance: the Outcomes of Metabolic Resuscitation Using Ascorbic Acid, Thiamine, and Glucocorticoids in the Early Treatment of Sepsis (ORANGES) Trial. Journal of Personalized Medicine, v. 11, p. 9, 2020.

SWEENEY, T. E. et al. Validation of inflammopathic, adaptive, and coagulopathic sepsis endotypes in coronavirus disease 2019. Critical Care Medicine, v. 49, p. e170–e178, 2021.

HUTCHINS, N. A.; UNSINGER, J.; HOTCHKISS, R. S.; AYALA, A. The new normal: immunomodulatory agents against sepsis immune suppression. Trends in Molecular Medicine, v. 20, p. 224–233, 2014.

WONG, H. R.; SWEENEY, T. E.; HART, K. W.; KHATRI, P.; LINSELL, C. J. Pediatric sepsis endotypes among adults with sepsis. Critical Care Medicine, v. 45, p. e1289–e1291, 2017.

HOTCHKISS, R. S.; MONNERET, G.; PAYEN, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews Immunology, v. 13, p. 862–874, 2013.

HUTCHINS, N. A.; UNSINGER, J.; HOTCHKISS, R. S.; AYALA, A. The new normal: immunomodulatory agents against sepsis immune suppression. Trends in Molecular Medicine, v. 20, p. 224–233, 2014.

VENKATESH, B.; COHEN, J. Hydrocortisone in vasodilatory shock. Critical Care Clinics, v. 35, p. 263–275, 2019.

ANNANE, D. et al. Hydrocortisone plus fludrocortisone for adults with septic shock. New England Journal of Medicine, v. 378, p. 809–818, 2018.

VENKATESH, B. et al. Adjunctive glucocorticoid therapy in patients with septic shock. New England Journal of Medicine, v. 378, p. 797–808, 2018.

ANTCLIFFE, D. B.; GORDON, A. C. Why understanding sepsis endotypes is important for steroid trials in septic shock. Critical Care Medicine, v. 47, p. 1782–1784, 2019.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Luiz Felipe Neves Frazão, Isadora Ribeiro Schettert, Luca Moreira Mansur Zambaldi, Gabriel Ramos Muniz Braga , Ana Beatriz Martins de Lima , Mateus dos Santos Ribeiro , Sthefan Bruno Machado Ribeiro, Felipe de Figueiredo Zaccara, Bárbara Helena Bernardes Cabral, Murilo Zupelli Rodrigues Alves

Downloads

Não há dados estatísticos.
1 1