Resumo
Introdução: A microbiota intestinal desempenha um papel crucial na saúde humana, influenciando a digestão, o metabolismo, o desenvolvimento do sistema imunológico e até mesmo o comportamento. Esta revisão visa explorar a relação entre a microbiota intestinal e o Transtorno do Espectro Autista (TEA), enfatizando seu potencial papel no desenvolvimento e manifestação dos sintomas do TEA através de vias imunológicas e metabólicas. Métodos: Os dados para esta revisão foram obtidos do PubMed e Science Direct, abrangendo literatura de 2011 a 2024. Os critérios de inclusão focaram em estudos originais, revisões sistemáticas e meta-análises que discutiam a composição da microbiota intestinal, disbiose e sua relação com o TEA. Os artigos foram selecionados com base na relevância, idioma (inglês ou português) e na presença de dados empíricos. Resultados: A revisão identificou 36 artigos que destacam a diversidade e as funções vitais da microbiota intestinal. A disbiose, um desequilíbrio na microbiota intestinal, está associada a problemas gastrointestinais, distúrbios metabólicos e condições neuropsiquiátricas, incluindo o TEA. Estudos indicam que crianças com TEA possuem composições de microbiota intestinal distintas, com redução da diversidade e desequilíbrios bacterianos específicos. Essas alterações podem contribuir para os sintomas do TEA através do eixo intestino-cérebro, afetando a produção de neurotransmissores e respostas imunológicas. Discussão: Manter uma microbiota intestinal equilibrada é essencial para a saúde geral, e a modulação da microbiota pode oferecer benefícios terapêuticos para o manejo dos sintomas do TEA. As alterações na microbiota intestinal observadas em indivíduos com TEA sugerem uma ligação potencial entre a saúde intestinal e os sintomas neuropsiquiátricos, destacando a importância de intervenções dietéticas e probióticas para manter a saúde intestinal. Conclusão: Esta revisão destaca o potencial da microbiota intestinal como um alvo terapêutico no TEA e a importância de intervenções dietéticas e probióticas na manutenção da saúde intestinal. É necessária uma pesquisa adicional para compreender completamente essas interações e desenvolver tratamentos eficazes baseados na microbiota, enfatizando a necessidade de abordagens personalizadas em aplicações clínicas.
Referências
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36.
Belizário JE, Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol. 2015;6:1050.
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80.
Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2015;65(2):330-9.
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502.
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic influences of gut microbiota dysbiosis on inflammatory bowel disease. Front Physiol. 2021;12:715506.
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137-50.
Garcia-Gutiérrez E, Narbad A, Rodríguez JM. Autism spectrum disorder associated with gut microbiota at immune, metabolomic, and neuroactive levels. Front Microbiol. 2020;11:562734.
Ma B, Liu B, Liu W, Zhang J, Zhang Y, Wang H. Altered gut microbiota in Chinese children with autism spectrum disorders. Front Cell Infect Microbiol. 2019;9:40.
Strati F, Pujolassos M, Burrello C, et al. Antibiotic-associated dysbiosis affects the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in experimental colitis models. Microbiome. 2021;9:39.
Geng J, Ni Q, Sun W, Li L, Feng X. The links between gut microbiota and obesity and obesity-related diseases. Biomed Pharmacother. 2022;147:112678.
Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E, Terrault NA. Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. Am J Clin Nutr. 2019;110(1):139-49.
Chetty A, Blekhman R. Multi-omic approaches for host-microbiome data integration. Curr Opin Microbiol. 2024;71:29-36.
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the cell surface architecture of Bacteroides and Bifidobacterium in the gut colonization. Front Microbiol. 2021;12:754819.
Guo X, Okpara ES, Hu W, Yan C, Wang Y, Liang Q, et al. Interactive relationships between intestinal flora and bile acids. Int J Mol Sci. 2022;23(15):8343.
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7:91.
Moraes A.C.F. de, Silva IT da, Almeida-Pititto B. de, Ferreira S.R.G. Intestinal microbiota and cardiometabolic risk: mechanisms and diet modulation. Arq Bras Endocrinol Metab [Internet]. 2014. Jun;58(4):317–27. Available from: https://doi.org/10.1590/0004-2730000002940.
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24.
Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep (Oxf). 2019;7(1):3-12.
Shi S, Liu J, Dong J, Hu J, Liu Y, Feng, J., Zhou D. Research progress on the regulation mechanism of probiotics on the microecological flora of infected intestines in livestock and poultry, Letters in Applied Microbiology, Volume 74, Issue 5, 1 May 2022, Pages 647–655, https://doi.org/10.1111/lam.13629.
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, et al. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol. 2023;14:1171680.
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, et al. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol. 2024;15:1330021.
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959-77.
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369-79.
Zheng Y, Bonfili L, Wei T, Eleuteri AM. Understanding the gut-brain axis and its therapeutic implications for neurodegenerative disorders. Nutrients. 2023;15(21):4631.
Song Y, Bai Y, Liu C, Zhai X, Zhang L. The impact of gut microbiota on autoimmune thyroiditis and relationship with pregnancy outcomes: a review. Front Cell Infect Microbiol. 2024;14:1361660.
Dieterich W, Schink M, Zopf Y. Microbiota in the gastrointestinal tract. Med Sci (Basel). 2018;6(4):116.
Martínez-González AE, Andreo-Martínez P. The role of gut microbiota in gastrointestinal symptoms of children with autism spectrum disorder. Medicina (Kaunas). 2019;55(8):408.
Maenner MJ, Warren Z, Williams AR, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ. 2023;72(SS-2):1-14.
Bozhilova N, Welham A, Adams D, et al. Profiles of autism characteristics in thirteen genetic syndromes: a machine learning approach. Mol Autism. 2023;14:3.
Song W, Zhang M, Teng L, Wang Y, Zhu L. Prebiotics and probiotics for autism spectrum disorder: a systematic review and meta-analysis of controlled clinical trials. J Med Microbiol. 2022;71(4).
Jiang M, Lu T, Yang K, Li X, Zhao L, Zhang D, et al. Autism spectrum disorder research: knowledge mapping of progress and focus between 2011 and 2022. Front Psychiatry. 2023;14:1096769.
Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of gut microbiota in children with autism spectrum disorder: a systematic review and meta-analysis. Nutrients. 2020;12(3):792.
Dan Z, Mao X, Liu Q, Guo M, Zhuang Y, Liu Z, et al. Altered gut microbial profile is associated with abnormal metabolism activity of autism spectrum disorder. Gut Microbes. 2020;11(5):1246-67.
Settanni CR, Ianiro G, Bibbò S, Cammarota G, Gasbarrini A. Gut microbiota alteration and modulation in psychiatric disorders: current evidence on fecal microbiota transplantation. Prog Neuropsychopharmacol Biol Psychiatry. 2021;109:110258.
Mahroum N, Seida R, Shoenfeld Y. Triggers and regulation: the gut microbiome in rheumatoid arthritis. Expert Rev Clin Immunol. 2023;19(12):1449-56.

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 CARINA TOLEDO SCOPARO BARIONI, Renata Paes de Barros Wandresen, Barbara Bruna de Araújo Oliveira Kubo, Amanda Franceschi Coimbra, Altair Rogério Ambrosio, Tatiana Monteiro Arns de Miranda