Resumo
A microbiota intestinal humana apresenta um papel fundamental na degradação dos alimentos e na homeostase do organismo. Idade, questões sociais, uso de medicamentos e até mesmo a dieta podem influenciar e modificar a abundância e a diversidade das bactérias que a compõe. A maioria dos medicamentos causam alterações na microbiota intestinal, resultando em aumento na abundância de alguns táxons e diminuição de outros; este fato decorre não somente de antibióticos, mas também de diversas classes, tais como: inibidores da bomba de prótons, drogas de abuso, antidepressivos, antiparkissonianos e quimioterápicos. O presente trabalho busca comparar artigos para a produção de uma revisão de literatura sobre a interação das principais classes farmacológicas com a microbiota intestinal humana. Observa-se que a microbiota intestinal se comunica com o cérebro através do eixo intestino-cérebro, influenciando o humor, a cognição e o comportamento. Sua construção se inicia no nascimento, sendo moldada pelo parto, tipo de alimentação e exposição a antibióticos, entre outros. Ao longo da vida a composição se estabiliza e com a idade avançada, pode ocorrer um desequilíbrio, favorecendo o desenvolvimento de doenças. A disbiose da microbiota intestinal pode ocasionar uma série de problemas como doenças cardiovasculares, diabetes, obesidade, doenças inflamatórias e até câncer. Além disso, é notável a existência de uma dupla influência: sua interferência sobre a resposta aos medicamentos, bem como a alteração de sua composição pelos fármacos. Antibióticos, por exemplo, podem causar disbiose, enquanto outros fármacos, como a metformina, podem ter seus efeitos modulados pela microbiota. Desta forma, a microbiota intestinal é um componente essencial da nossa saúde, influenciando diversos aspectos do nosso organismo. Compreender a relação entre a microbiota e a saúde abre caminhos para novas abordagens terapêuticas e preventivas para diversas doenças.
Referências
ADAK, A.; KHAN, M. R. An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, v. 76, n. 3, p. 473–493, 2019. Disponível em: <https://doi.org/10.1007/s00018-018-2943-4>.
ANDERSSON, A. F.; LINDBERG, M.; JAKOBSSON, H.; BÄCKHED, F.; NYRÉN, P.; ENGSTRAND, L. Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE, v. 3, n. 7, p. e2836, 30 jul. 2008. Disponível em: <https://dx.plos.org/10.1371/journal.pone.0002836>.
ANGOA-PÉREZ, M.; KUHN, D. M. Evidence for modulation of substance use disorders by the gut microbiome: Hidden in plain sight. Pharmacological Reviews, v. 73, n. 2, p. 571–596, 2021.
ANGOA-PÉREZ, M.; ZAGORAC, B.; FRANCESCUTTI, D. M.; SHAFFER, Z. D.; THEIS, K. R.; KUHN, D. M. Cocaine hydrochloride, cocaine methiodide and methylenedioxypyrovalerone (MDPV) cause distinct alterations in the structure and composition of the gut microbiota. Scientific Reports, v. 13, n. 1, p. 1–13, 2023. Disponível em: <https://doi.org/10.1038/s41598-023-40892-1>.
BADGELEY, A.; ANWAR, H.; MODI, K.; MURPHY, P.; LAKSHMIKUTTYAMMA, A. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochimica et Biophysica Acta - Reviews on Cancer, v. 1875, n. 1, p. 188494, 2021. Disponível em: <https://doi.org/10.1016/j.bbcan.2020.188494>.
BAILEY, S.; FRASER, K. Advancing our understanding of the influence of drug induced changes in the gut microbiome on bone health. Frontiers in Endocrinology, v. 14, n. October, p. 1–12, 2023.
BIK, E. M.; ECKBURG, P. B.; GILL, S. R.; NELSON, K. E.; PURDOM, E. A.; FRANCOIS, F.; PEREZ-PEREZ, G.; BLASER, M. J.; RELMAN, D. A. Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences, v. 103, n. 3, p. 732–737, 17 jan. 2006. Disponível em: <https://pnas.org/doi/full/10.1073/pnas.0506655103>.
CHAPUT, N.; LEPAGE, P.; COUTZAC, C.; SOULARUE, E.; LE ROUX, K.; MONOT, C.; BOSELLI, L.; ROUTIER, E.; CASSARD, L.; COLLINS, M.; VAYSSE, T.; MARTHEY, L.; EGGERMONT, A.; ASVATOURIAN, V.; LANOY, E.; MATEUS, C.; ROBERT, C.; CARBONNEL, F. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Annals of Oncology, v. 28, n. 6, p. 1368–1379, jun. 2017. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0923753419324317>.
CHEN, Y. huan; BAI, J.; WU, D.; YU, S. fen; QIANG, X. ling; BAI, H.; WANG, H. ning; PENG, Z. wu. Association between fecal microbiota and generalized anxiety disorder: Severity and early treatment response. Journal of Affective Disorders, v. 259, n. May, p. 56–66, 2019.
CHENG, P.; SHEN, P.; SHAN, Y.; YANG, Y.; DENG, R.; CHEN, W.; LU, Y.; WEI, Z. Gut Microbiota-Mediated Modulation of Cancer Progression and Therapy Efficacy. Frontiers in Cell and Developmental Biology, v. 9, n. September, p. 1–11, 2021.
COKER, O. O.; DAI, Z.; NIE, Y.; ZHAO, G.; CAO, L.; NAKATSU, G.; WU, W. K.; WONG, S. H.; CHEN, Z.; SUNG, J. J. Y.; YU, J. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut, v. 67, n. 6, p. 1024–1032, jun. 2018. Disponível em: <https://gut.bmj.com/lookup/doi/10.1136/gutjnl-2017-314281>.
FREEDBERG, D. E.; LEBWOHL, B.; ABRAMS, J. A. The Impact of Proton Pump Inhibitors on the Human Gastrointestinal Microbiome. Clinics in Laboratory Medicine, v. 34, n. 4, p. 771–785, dez. 2014. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0272271214000833>.
FU, S. C.; LEE, C. H.; HSIEH, Y. C.; WU, P. H.; LIN, S. H.; WANG, H. A Pilot Study Exploring the Association of Entacapone, Gut Microbiota, and the Subsequent Side Effects in Patients With Parkinson’s Disease. Frontiers in Cellular and Infection Microbiology, v. 12, n. April, p. 1–10, 2022.
HOBSON, C. A.; VIGUÉ, L.; MAGNAN, M.; CHASSAING, B.; NAIMI, S.; GACHET, B.; CLARAZ, P.; STORME, T.; BONACORSI, S.; TENAILLON, O.; BIRGY, A. A Microbiota-Dependent Response to Anticancer Treatment in an In Vitro Human Microbiota Model: A Pilot Study With Hydroxycarbamide and Daunorubicin. Frontiers in Cellular and Infection Microbiology, v. 12, n. June, p. 1–11, 2022.
KARIM, M. R.; IQBAL, S.; MOHAMMAD, S.; LEE, J. H.; JUNG, D.; MATHIYALAGAN, R.; YANG, D. C.; YANG, D. U.; KANG, S. C. A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiological Research, v. 271, n. January, p. 127346, 2023. Disponível em: <https://doi.org/10.1016/j.micres.2023.127346>.
KAZEMIAN, N.; MAHMOUDI, M.; HALPERIN, F.; WU, J. C.; PAKPOUR, S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, v. 8, n. 1, p. 36, 14 dez. 2020. Disponível em: <https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00821-0>.
KOLIADA, A.; SYZENKO, G.; MOSEIKO, V.; BUDOVSKA, L.; PUCHKOV, K.; PEREDERIY, V.; GAVALKO, Y.; DOROFEYEV, A.; ROMANENKO, M.; TKACH, S.; SINEOK, L.; LUSHCHAK, O.; VAISERMAN, A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, v. 17, n. 1, p. 4–9, 2017.
LEW, K. N.; STARKWEATHER, A.; CONG, X.; JUDGE, M. A Mechanistic Model of Gut–Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biological Research for Nursing, v. 21, n. 4, p. 384–399, 2019.
LU, Y.; LIU, H.; YANG, K.; MAO, Y.; MENG, L.; YANG, L.; OUYANG, G.; LIU, W. A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. Journal of Zhejiang University: Science B, v. 23, n. 1, p. 1–18, 2022.
MAIER, L.; PRUTEANU, M.; KUHN, M.; ZELLER, G.; TELZEROW, A.; ANDERSON, E. E.; BROCHADO, A. R.; FERNANDEZ, K. C.; DOSE, H.; MORI, H.; PATIL, K. R.; BORK, P.; TYPAS, A. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, v. 555, n. 7698, p. 623–628, 29 mar. 2018. Disponível em: <https://www.nature.com/articles/nature25979>.
MANOS, J. The human microbiome in disease and pathology. Apmis, v. 130, n. 12, p. 690–705, 2022.
MASEDA, D.; RICCIOTTI, E. NSAID–Gut Microbiota Interactions. Frontiers in Pharmacology, v. 11, n. August, p. 1–20, 2020.
MAYER, E. A.; NANCE, K.; CHEN, S. The Gut–Brain Axis. Annual Review of Medicine, v. 73, n. 1, p. 439–453, 27 jan. 2022. Disponível em: <https://www.annualreviews.org/doi/10.1146/annurev-med-042320-014032>.
MECKEL, K. R.; KIRALY, D. D. A potential role for the gut microbiome in substance use disorders. Psychopharmacology, v. 236, n. 5, p. 1513–1530, 14 maio 2019. Disponível em: <http://link.springer.com/10.1007/s00213-019-05232-0>.
NAQVI, S.; ASAR, T. O.; KUMAR, V.; AL-ABBASI, F. A.; ALHAYYANI, S.; KAMAL, M. A.; ANWAR, F. A cross-talk between gut microbiome, salt and hypertension. Biomedicine and Pharmacotherapy, v. 134, p. 111156, 2021. Disponível em: <https://doi.org/10.1016/j.biopha.2020.111156>.
PICCHIANTI-DIAMANTI, A.; PANEBIANCO, C.; SALEMI, S.; SORGI, M. L.; DI ROSA, R.; TROPEA, A.; SGRULLETTI, M.; SALERNO, G.; TERRACCIANO, F.; D’AMELIO, R.; LAGANÀ, B.; PAZIENZA, V. Analysis of gut microbiota in rheumatoid arthritis patients: Disease-related dysbiosis and modifications induced by etanercept. International Journal of Molecular Sciences, v. 19, n. 10, 2018.
POPE, J. L.; TOMKOVICH, S.; YANG, Y.; JOBIN, C. Microbiota as a mediator of cancer progression and therapy. Translational Research, v. 179, p. 139–154, jan. 2017. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1931524416301554>.
RAJILIĆ-STOJANOVIĆ, M.; DE VOS, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, v. 38, n. 5, p. 996–1047, 2014.
REKDAL, V. M.; BESS, E. N.; BISANZ, J. E.; TURNBAUGH, P. J.; BALSKUS, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science, v. 364, n. 6445, 2019.
RIDLON, J. M.; KANG, D. J.; HYLEMON, P. B.; BAJAJ, J. S. Bile acids and the gut microbiome. Current Opinion in Gastroenterology, v. 30, n. 3, p. 332–338, maio 2014. Disponível em: <http://journals.lww.com/00001574-201405000-00018>.
SCHULZ, C.; KOCH, N.; SCHÜTTE, K.; PIEPER, D. H.; MALFERTHEINER, P. H . pylori and its modulation of gastrointestinal microbiota. Journal of Digestive Diseases, v. 16, n. 3, p. 109–117, 27 mar. 2015. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1111/1751-2980.12233>.
SHAH, H.; NG, T. L. A narrative review from gut to lungs: non-small cell lung cancer and the gastrointestinal microbiome. Translational Lung Cancer Research, v. 12, n. 4, p. 909–926, 2023.
SHEN, W.; WANG, X.; QIN, W.; QIU, X.; SUN, B. Exogenous carbon monoxide suppresses Escherichia coli vitality and improves survival in an Escherichia coli-induced murine sepsis model. Acta Pharmacologica Sinica, v. 35, n. 12, p. 1566–1576, 17 dez. 2014. Disponível em: <https://www.nature.com/articles/aps201499>.
SHEN, Y.; YANG, X.; LI, G.; GAO, J.; LIANG, Y. The change of gut microbiota in MDD patients under SSRIs treatment. Scientific Reports, v. 11, n. 1, p. 14918, 21 jul. 2021. Disponível em: <https://www.nature.com/articles/s41598-021-94481-1>.
SOST, M. M.; AHLES, S.; VERHOEVEN, J.; VERBRUGGEN, S.; STEVENS, Y.; VENEMA, K. A citrus fruit extract high in polyphenols beneficially modulates the gut microbiota of healthy human volunteers in a validated in vitro model of the colon. Nutrients, v. 13, n. 11, 2021.
VERANI, J. R.; MCGEE, L.; SCHRAG, S. J. Prevention of Perinatal Group B Streptococcal Disease--Revised Guidelines from CDC, 2010. MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports, v. 59, n. RR-10, p. 1–36, nov. 2010.
VOLPE, G. E.; WARD, H.; MWAMBURI, M.; DINH, D.; BHALCHANDRA, S.; WANKE, C.; KANE, A. V. Associations of Cocaine Use and HIV Infection With the Intestinal Microbiota, Microbial Translocation, and Inflammation. Journal of Studies on Alcohol and Drugs, v. 75, n. 2, p. 347–357, mar. 2014. Disponível em: <https://www.jsad.com/doi/10.15288/jsad.2014.75.347>.
WAGENAAR, C. A.; VAN DE PUT, M.; BISSCHOPS, M.; WALRABENSTEIN, W.; DE JONGE, C. S.; HERREMA, H.; VAN SCHAARDENBURG, D. The effect of dietary interventions on chronic inflammatory diseases in relation to the microbiome: A systematic review. Nutrients, v. 13, n. 9, 2021.
WILLIAMS, J. E.; CARROTHERS, J. M.; LACKEY, K. A.; BEATTY, N. F.; BROOKER, S. L.; PETERSON, H. K.; STEINKAMP, K. M.; YORK, M. A.; SHAFII, B.; PRICE, W. J.; MCGUIRE, M. A.; MCGUIRE, M. K. Strong multivariate relations exist among milk, oral, and fecal microbiomes in mother-infant dyads during the first six months postpartum. Journal of Nutrition, v. 149, n. 6, p. 902–914, 2019.
WONG, S. H.; KWONG, T. N. Y.; WU, C.-Y.; YU, J. Clinical applications of gut microbiota in cancer biology. Seminars in Cancer Biology, v. 55, p. 28–36, abr. 2019. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1044579X18300269>.
YANG, Q.; WANG, B.; ZHENG, Q.; LI, H.; MENG, X.; ZHOU, F.; ZHANG, L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. Advanced Science, v. 10, n. 15, p. 1–27, 2023.
YOO, H. H.; KIM, I. S.; YOO, D.-H.; KIM, D.-H. Effects of orally administered antibiotics on the bioavailability of amlodipine. Journal of Hypertension, v. 34, n. 1, p. 156–162, jan. 2016. Disponível em: <https://journals.lww.com/00004872-201601000-00022>.
SBC. Em 30 anos, taxa de mortalidade por doenças cardiovasculares cai no Brasil e no RS. Sociedade Brasileira de Cardiologia. 2023. Disponível em: < https://www.portal.cardiol.br/br/post/em-30-anos-taxa-de-mortalidade-por-doen%C3%A7as-cardiovasculares-cai-no-brasil-e-no-rs>.
MELO, B. R. C.; OLIVEIRA, R. S. B. Prevalência de Disbiose Intestinal e sua relação com doenças crônicas não transmissíveis em estudantes de uma Instituição de Ensino Superior de Fortaleza - CE. Revista Brasileira de Obesidade, Nutrição e Emagrecimento, v.12. n.74. p.767-775, 2018. Disponível em < https://www.rbone.com.br/index.php/rbone/article/view/790/592>.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Giovanna Zuzarte Candido, Edson José Mazarotto, Paulo Cézar Gregório, Caroline Cardozo Gasparin