Resumo
A evolução dos sistemas informatizados para a produção de restaurações dentárias associadas ao desenvolvimento de novas microestruturas para materiais cerâmicos causou uma mudança importante no fluxo de trabalho clínico de dentistas e técnicos, bem como nas opções de tratamento oferecidas aos pacientes. Novas microestruturas também foram desenvolvidas pela indústria para oferecer materiais cerâmicos e compósitos com propriedades otimizadas, ou seja, boas propriedades mecânicas, comportamento adequado ao desgaste e características estéticas aceitáveis. O objetivo desta revisão de literatura é discutir as principais vantagens e desvantagens dos novos sistemas cerâmicos e métodos de processamento. O manuscrito está dividido em cinco partes: I) restaurações monolíticas de zircônia; II) próteses dentárias multicamadas; III) novas vitrocerâmicas; IV) cerâmica infiltrada por polímero; e V) novas tecnologias de processamento. As cerâmicas dentárias e as tecnologias de processamento evoluíram significativamente nos últimos dez anos, com a maior parte da evolução relacionada a novas microestruturas e métodos CAD-CAM. Além disso, uma tendência ao uso de restaurações monolíticas mudou a maneira como os médicos produzem próteses dentárias totalmente em cerâmica, uma vez que as restaurações mais estéticas em várias camadas, infelizmente, são mais propensas a lascar ou delaminar. Os materiais compósitos processados via CAD-CAM tornaram-se uma opção interessante, pois possuem propriedades intermediárias entre cerâmica e polímeros e são mais facilmente fresados e polidos.
Referências
Marchack BW, Sato S, Marchack CB, White SN. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: a clinical report. J Prosthet Dent. 2011;106(3):145-52.
Schley JS, Heussen N, Reich S, Fischer J, Haselhuhn K, Wolfart S. Survival probability of zirconia‐based fixed dental prostheses up to 5 yr: a systematic review of the literature. Eur J Oral Sci. 2010;118(5):443-50.
Zhang H, Li Z, Kim B-N, Morita K, Yoshida H, Hiraga K et al. Effect of alumina dopant on transparency of tetragonal zirconia. J Nanomater. 2012;2012:ID269064.
Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30(10):1195-203.
Cheng J, Agrawal D, Zhang Y, Roy R. Microwave sintering of transparent alumina. Mater Lett. 2002;56(4):587-92.
Klimke J, Trunec M, Krell A. Transparent tetragonal yttria‐stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc. 2011;94(6):1850-8.
Kim HK, Kim SH. Optical properties of pre-colored dental monolithic zirconia ceramics. J Dent. 2016;55:75-81.
Sedda M, Vichi A, Carrabba M, Capperucci A, Louca C, Ferrari M. Influence of coloring procedure on flexural resistance of zirconia blocks. J Prosthet Dent. 2015;114(1):98-102.
Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater. 2014;30(9):e229-37.
Rinke S, Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int. 2013;44(8):557-66.
Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont. 2016;8(1):37-42.
Neto, Ulisses Gomes Guimarães, and Suzane Medeiros de Araújo Bacelar. "Implantes dentários com superfície tratada: revisão de literatura." Brazilian Journal of Implantology and Health Sciences 1.4 (2019): 69-83.
Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater. 2016;59:128-38.
Rauber, Silvana. "OSSEODENSIFICAÇÃO EM IMPLANTES DENTÁRIOS: UMA REVISÃO DE LITERATURA." Brazilian Journal of Implantology and Health Sciences 1.4 (2019): 1-13.
Park JH, Park S, Lee K, Yun KD, Lim HP. Antagonist wear of three CAD/CAM anatomic contour zirconia ceramics. J Prosthet Dent. 2014;111(1):20-9.
Jung YS, Lee JW, Choi YJ, Ahn JS, Shin SW, Huh JB. A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J Adv Prosthodont. 2010;2(3):111-15.
Lohbauer U, Reich S. Antagonist wear of monolithic zirconia crowns after 2 years. Clin Oral Investig. 2017;21(4):1165-72.
Hamza TA, Sherif RM. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems. J Prosthet Dent. 2017;117(6):762-6.
Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):302-9.
Pereira G, Silvestri T, Camargo R, Rippe MP, Amaral M, Kleverlaan CJ et al. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging. Mater Sci Eng C. 2016;63:70-7.
Bömicke W, Rammelsberg P, Stober T, Schmitter M. Short‐term prospective clinical evaluation of monolithic and partially veneered zirconia single crowns. J Esthet Restor Dent. 2017;29(1):22-30.
Sulaiman TA, Abdulmajeed AA, Donovan TE, Cooper LF, Walter R. Fracture rate of monolithic zirconia restorations up to 5 years: a dental laboratory survey. Prosthet Dent. 2016,116(3):436-9.
Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Partm: multiple-unit FDPs. Dent Mater. 2015;31(6):624-39.
Lucas LC, Lemons JE. Biodegradation of restorative metallic systems. Adv Dent Res. 1992;6(1):32-7.
Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1-25.
Sailer I, Fehér A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20(4):383-8.
Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater. 2013;29(3):307-16.
White SN, Miklus VG, McLaren EA, Lang LA, Caputo AA. Flexural strength of a layered zirconia and porcelain dental all-ceramic system. J Prosthet Dent. 2005;94(2):125-31.
Al-Amleh B, Neil Waddell J, Lyons K, Swain MV. Influence of veneering porcelain thickness and cooling rate on residual stresses in zirconia molar crowns. Dent Mater. 2014;30(3):271-80.
Stawarczyk B, Ozcan M, Roos M, Trottmann A, Sailer I, H6ammerle CH. Load-bearing capacity and failure types of anterior zirconia crowns veneered with overpressing and layering techniques. Dent Mater. 2011;27(10):1045-53.
Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent. 2012;40(2):154-62.
Schmitter M, Schweiger M, Mueller D, Rues S. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater. 2014;30(2):122-30.
Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont. 2012;4(3):162-9.
Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res. 2007;18 Suppl 3:218-31.
Höland W, Beall GH. Glass ceramic technology. 2nd ed. Hoboken: John Wiley & Sons; 2012.
Höland W, Rheinberger V, Apel E, Hoen C, Höland M, Dommann A et al. Clinical applications of glass-ceramics in dentistry. J Mater Sci Mater Med. 2006;17(11):1037-42.
Ritzberger C, Apel E, Höland W, Peschke A, Rheinberger VM. Properties and clinical application of three types of dental glass-ceramics and ceramics for CAD-CAM technologies. Mater. 2010;3(6):3700-13.
MacCulloch WT. Advances in dental ceramics. Br Dent J. 1968;124(8):361-5.
Höland W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res. 2000;53(4):297-303.
Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. J Prosthodont. 2012;21(5):353-62.
Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater. 2003;19(7):603-11.
Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater. 2004;20(5):441-8.
Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc. 2012;143(3):234-40.
Schweiger M, Höland W, Frank M, Drescher H, Rheinberger V. IPS Empress 2: a new pressable high-strength glass-ceramic for esthetic all-ceramic restorations. Quintessence Dent Technol. 1999;22:143-51.
Ritzberger C, Schweiger M, Höland W. Principles of crystal phase formation in Ivoclar Vivadent glass-ceramics for dental restorations. J Non Cryst Solids. 2016;432 Part A:137-42.
Kang SH, Chang J, Son HH. Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic. Restor Dent Endod. 2013;38(3):134-40.
Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017;33(1):99-109.
Rinke S, Pabel A-K, diger M, Ziebolz D. Chairside Fabrication of an all-ceramic partial crown using a zirconia-reinforced lithium silicate ceramic. Case Rep Dent. 2016;2016:ID1354186.
Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H et al. Chairside CAD/CAM materials. Part 1: measurement of elastic constants and microstructural characterization. Dent Mater. 2017;33(1):84-98.
Apel E, van’t Hoen C, Rheinberger V, Höland W. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc. 2007;27(2-3):1571-77.
Krüger S, Deubener J, Ritzberger C, Höland W. Nucleation kinetics of lithium metasilicate in ZrO2‐bearing lithium disilicate glasses for dental application. Int J Appl Glass Sci 2013;4(1):9-19.
Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-35.
Rinke S, Pabel AK, Rodiger M, Ziebolz D. Chairside Fabrication of an all-ceramic partial crown using a zirconia-reinforced lithium silicate ceramic. Case Rep Dent. 2016;2016:ID1354186.
He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011;27(6):527-34.
Coldea A, Fischer J, Swain MV, Thiel N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater. 2015;31(6):684-94.
Chirumamilla G, Goldstein CE, Lawson NC. A 2‐year retrospective clinical study of enamic crowns performed in a private practice setting. J Esthet Restor Dent. 2016;28(4):231-7. https://doi.org/10.1111/jerd.12206 [ Links ]
Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater. 2013;26:34-42.
Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93(12):1235-42.
Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014;93(12):1232-4.
Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013;29(4):419-26.
Shetty R, Shenoy K, Dandekeri S, Suhaim KS, Ragher M, Francis J. Resin-matrix ceramics: an overview. Int J Rec Sci Res. 2015;6(11):7414-17.
Ramos NC, Campos TMB, Paz IS, Machado JPB, Bottino MA, Cesar PF et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016;32(7):870-8.
Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30(5):564-9.
Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater. 2016;32(1):34-42.
Padmanabhan SK, Balakrishnan A, Chu MC, Kim TN, Cho SJ. Micro-indentation fracture behavior of human enamel. Dent Mater. 2010;26(1):100-04.
Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):e495-500.
Min J, Arola DD, Yu D, Yu P, Zhang Q, Yu H et al. Comparison of human enamel and polymer-infiltrated-ceramic-network material “ENAMIC” through micro-and nano-mechanical testing. Ceram Int. 2016;42(9):10631-7.
El-Safty S, Akhtar R, Silikas N, Watts DC. Nanomechanical properties of dental resin-composites. Dent Mater. 2012;28(12):1292-300.
Xu HH, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM. Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites. Dent Mater. 2000;16(4):248-54.
Zhang Y, Allahkarami M, Hanan JC. Measuring residual stress in ceramic zirconia-porcelain dental crowns by nanoindentation. J Mech Behav Biomed Mater. 2012;6:120-7.
Smith CM, Jiang D, Gong J, Yin L. Determination of the mechanical behavior of lithium disilicate glass ceramics by nanoindentation & scanning probe microscopy. Mater Chem Phys. 2014;148(3):1036-44.
Leung BT, Tsoi JK, Matinlinna JP, Pow EH. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. J Prosthet Dent. 2015;114(3):440-6.
Tsitrou EA, Northeast SE, Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent. 2007;35(12):897-902.
Awad D, Stawarczyk B, Liebermann A, Ilie N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J Prosthet Dent. 2015;113(6):534-40.
Lawson NC, Burgess JO. Gloss and stain resistance of ceramic‐polymer CAD/CAM restorative blocks. J Esthet Restor Dent. 2016;28 Suppl 1:S40-5.
Kelly JR, Rungruanganunt P, Hunter B, Vailati F. Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent. 2010;104(4):228-38.
Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent. 2004;92(6):557-62.
Anusavice KJ. Reducing the failure potential of ceramic-based restorations. Part 2: ceramic inlays, crowns, veneers, and bridges. Gen Dent. 1997;45(1):30-5.
Duret F, Blouin JL, Duret B. CAD-CAM in dentistry. J Am Dent Assoc. 1988;117(6):715-20.
Liu PR. A panorama of dental CAD/CAM restorative systems. Compend Contin Educ Dent. 2005;26(7):507-10.
Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28(1):44-56.
Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54-64.
Huang H. Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding. Mater Sci Eng A. 2003;345(1–2):155-63.
Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater. 2008;24(5):633-8.
Kohorst P, Junghanns J, Dittmer MP, Borchers L, Stiesch M. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy. Clin Oral Investig. 2011;15(4):527-36.
Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289-96.
Chartier T, Chaput C, Doreau F, Loiseau M. Stereolithography of structural complex ceramic parts. J Mater Sci. 2002;37(15):3141-47.
Doreau F, Chaput C, Chartier T. Stereolithography for manufacturing ceramic parts. Adv Eng Mater. 2000;2(8):493-6.
Silva NR, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J. Additive CAD/CAM process for dental prostheses. J Prosthodont. 2011;20(2):93-6.
Özkol E, Zhang W, Ebert J, Telle R. Potentials of the “Direct inkjet printing” method for manufacturing 3Y-TZP based dental restorations. J Eur Ceram Soc. 2012;32(10):2193-201.
Ebert J, Ozkol E, Zeichner A, Uibel K, Weiss O, Koops U et al. Direct inkjet printing of dental prostheses made of zirconia. J Dent Res. 2009;88(7):673-6.
SILVA, Lucas Hian da, et al. "Dental ceramics: a review of new materials and processing methods." Brazilian oral research 31 (2017)
Este artigo é uma cópia com adaptação para o português do Artigo Original "SILVA, Lucas Hian da, et al. "Dental ceramics: a review of new materials and processing methods." Brazilian oral research 31 (2017)" Esta Cópia com adaptação para o Português segue os preceitos Creative Commons CC BY 4.0 ( https://creativecommons.org/licenses/by/4.0/deed.pt_BR ) disponibilizado pelo periódico responsável pela publicação original ( https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-83242017000500203 ).
OS AUTORES DECLARAM NÃO HAVER CONFLITOS DE INTERESSE / THE AUTHORS DECLARE NO CONFLICTS OF INTEREST
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 Lucas Hian da Silva , Erick de Lima, Ranulfo Benedito de Paula Miranda , Stéphanie Soares Favero, Ulrich Lohbauer , Paulo Francisco Cesar