Dental ceramics: a review of new materials and processing methods.
PDF (Português (Brasil))

Keywords

Ceramics; Dental materials; Dental Porcelain; Computer Assisted Project; Composite resins

How to Cite

da Silva , L. H. ., de Lima, E. . ., de Paula Miranda , R. B. ., Soares Favero, S. ., Lohbauer , U. ., & Cesar, P. F. . (2020). Dental ceramics: a review of new materials and processing methods. Brazilian Journal of Implantology and Health Sciences, 2(8), 50–72. https://doi.org/10.36557/2674-8169.2020v2n8p50-72

Abstract

The evolution of computerized systems for the production of dental restorations associated with the development of new microstructures for ceramic materials has caused an important change in the clinical workflow of dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry to offer ceramic and composite materials with optimized properties, that is, good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The purpose of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided into five parts: I) monolithic zirconia restorations; II) multilayer dental prostheses; III) new glass-ceramics; IV) ceramic infiltrated by polymer; and V) new processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way physicians produce all-ceramic dental prostheses, since more aesthetic restorations in several layers, unfortunately, are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

https://doi.org/10.36557/2674-8169.2020v2n8p50-72
PDF (Português (Brasil))

References

Marchack BW, Sato S, Marchack CB, White SN. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: a clinical report. J Prosthet Dent. 2011;106(3):145-52.

Schley JS, Heussen N, Reich S, Fischer J, Haselhuhn K, Wolfart S. Survival probability of zirconia‐based fixed dental prostheses up to 5 yr: a systematic review of the literature. Eur J Oral Sci. 2010;118(5):443-50.

Zhang H, Li Z, Kim B-N, Morita K, Yoshida H, Hiraga K et al. Effect of alumina dopant on transparency of tetragonal zirconia. J Nanomater. 2012;2012:ID269064.

Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30(10):1195-203.

Cheng J, Agrawal D, Zhang Y, Roy R. Microwave sintering of transparent alumina. Mater Lett. 2002;56(4):587-92.

Klimke J, Trunec M, Krell A. Transparent tetragonal yttria‐stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc. 2011;94(6):1850-8.

Kim HK, Kim SH. Optical properties of pre-colored dental monolithic zirconia ceramics. J Dent. 2016;55:75-81.

Sedda M, Vichi A, Carrabba M, Capperucci A, Louca C, Ferrari M. Influence of coloring procedure on flexural resistance of zirconia blocks. J Prosthet Dent. 2015;114(1):98-102.

Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater. 2014;30(9):e229-37.

Rinke S, Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int. 2013;44(8):557-66.

Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont. 2016;8(1):37-42.

Neto, Ulisses Gomes Guimarães, and Suzane Medeiros de Araújo Bacelar. "Implantes dentários com superfície tratada: revisão de literatura." Brazilian Journal of Implantology and Health Sciences 1.4 (2019): 69-83.

Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater. 2016;59:128-38.

Rauber, Silvana. "OSSEODENSIFICAÇÃO EM IMPLANTES DENTÁRIOS: UMA REVISÃO DE LITERATURA." Brazilian Journal of Implantology and Health Sciences 1.4 (2019): 1-13.

Park JH, Park S, Lee K, Yun KD, Lim HP. Antagonist wear of three CAD/CAM anatomic contour zirconia ceramics. J Prosthet Dent. 2014;111(1):20-9.

Jung YS, Lee JW, Choi YJ, Ahn JS, Shin SW, Huh JB. A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J Adv Prosthodont. 2010;2(3):111-15.

Lohbauer U, Reich S. Antagonist wear of monolithic zirconia crowns after 2 years. Clin Oral Investig. 2017;21(4):1165-72.

Hamza TA, Sherif RM. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems. J Prosthet Dent. 2017;117(6):762-6.

Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):302-9.

Pereira G, Silvestri T, Camargo R, Rippe MP, Amaral M, Kleverlaan CJ et al. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging. Mater Sci Eng C. 2016;63:70-7.

Bömicke W, Rammelsberg P, Stober T, Schmitter M. Short‐term prospective clinical evaluation of monolithic and partially veneered zirconia single crowns. J Esthet Restor Dent. 2017;29(1):22-30.

Sulaiman TA, Abdulmajeed AA, Donovan TE, Cooper LF, Walter R. Fracture rate of monolithic zirconia restorations up to 5 years: a dental laboratory survey. Prosthet Dent. 2016,116(3):436-9.

Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Partm: multiple-unit FDPs. Dent Mater. 2015;31(6):624-39.

Lucas LC, Lemons JE. Biodegradation of restorative metallic systems. Adv Dent Res. 1992;6(1):32-7.

Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1-25.

Sailer I, Fehér A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20(4):383-8.

Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater. 2013;29(3):307-16.

White SN, Miklus VG, McLaren EA, Lang LA, Caputo AA. Flexural strength of a layered zirconia and porcelain dental all-ceramic system. J Prosthet Dent. 2005;94(2):125-31.

Al-Amleh B, Neil Waddell J, Lyons K, Swain MV. Influence of veneering porcelain thickness and cooling rate on residual stresses in zirconia molar crowns. Dent Mater. 2014;30(3):271-80.

Stawarczyk B, Ozcan M, Roos M, Trottmann A, Sailer I, H6ammerle CH. Load-bearing capacity and failure types of anterior zirconia crowns veneered with overpressing and layering techniques. Dent Mater. 2011;27(10):1045-53.

Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent. 2012;40(2):154-62.

Schmitter M, Schweiger M, Mueller D, Rues S. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater. 2014;30(2):122-30.

Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont. 2012;4(3):162-9.

Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res. 2007;18 Suppl 3:218-31.

Höland W, Beall GH. Glass ceramic technology. 2nd ed. Hoboken: John Wiley & Sons; 2012.

Höland W, Rheinberger V, Apel E, Hoen C, Höland M, Dommann A et al. Clinical applications of glass-ceramics in dentistry. J Mater Sci Mater Med. 2006;17(11):1037-42.

Ritzberger C, Apel E, Höland W, Peschke A, Rheinberger VM. Properties and clinical application of three types of dental glass-ceramics and ceramics for CAD-CAM technologies. Mater. 2010;3(6):3700-13.

MacCulloch WT. Advances in dental ceramics. Br Dent J. 1968;124(8):361-5.

Höland W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res. 2000;53(4):297-303.

Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. J Prosthodont. 2012;21(5):353-62.

Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater. 2003;19(7):603-11.

Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater. 2004;20(5):441-8.

Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc. 2012;143(3):234-40.

Schweiger M, Höland W, Frank M, Drescher H, Rheinberger V. IPS Empress 2: a new pressable high-strength glass-ceramic for esthetic all-ceramic restorations. Quintessence Dent Technol. 1999;22:143-51.

Ritzberger C, Schweiger M, Höland W. Principles of crystal phase formation in Ivoclar Vivadent glass-ceramics for dental restorations. J Non Cryst Solids. 2016;432 Part A:137-42.

Kang SH, Chang J, Son HH. Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic. Restor Dent Endod. 2013;38(3):134-40.

Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017;33(1):99-109.

Rinke S, Pabel A-K, diger M, Ziebolz D. Chairside Fabrication of an all-ceramic partial crown using a zirconia-reinforced lithium silicate ceramic. Case Rep Dent. 2016;2016:ID1354186.

Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H et al. Chairside CAD/CAM materials. Part 1: measurement of elastic constants and microstructural characterization. Dent Mater. 2017;33(1):84-98.

Apel E, van’t Hoen C, Rheinberger V, Höland W. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc. 2007;27(2-3):1571-77.

Krüger S, Deubener J, Ritzberger C, Höland W. Nucleation kinetics of lithium metasilicate in ZrO2‐bearing lithium disilicate glasses for dental application. Int J Appl Glass Sci 2013;4(1):9-19.

Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-35.

Rinke S, Pabel AK, Rodiger M, Ziebolz D. Chairside Fabrication of an all-ceramic partial crown using a zirconia-reinforced lithium silicate ceramic. Case Rep Dent. 2016;2016:ID1354186.

He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011;27(6):527-34.

Coldea A, Fischer J, Swain MV, Thiel N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater. 2015;31(6):684-94.

Chirumamilla G, Goldstein CE, Lawson NC. A 2‐year retrospective clinical study of enamic crowns performed in a private practice setting. J Esthet Restor Dent. 2016;28(4):231-7. https://doi.org/10.1111/jerd.12206 [ Links ]

Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater. 2013;26:34-42.

Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93(12):1235-42.

Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014;93(12):1232-4.

Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013;29(4):419-26.

Shetty R, Shenoy K, Dandekeri S, Suhaim KS, Ragher M, Francis J. Resin-matrix ceramics: an overview. Int J Rec Sci Res. 2015;6(11):7414-17.

Ramos NC, Campos TMB, Paz IS, Machado JPB, Bottino MA, Cesar PF et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016;32(7):870-8.

Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30(5):564-9.

Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater. 2016;32(1):34-42.

Padmanabhan SK, Balakrishnan A, Chu MC, Kim TN, Cho SJ. Micro-indentation fracture behavior of human enamel. Dent Mater. 2010;26(1):100-04.

Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):e495-500.

Min J, Arola DD, Yu D, Yu P, Zhang Q, Yu H et al. Comparison of human enamel and polymer-infiltrated-ceramic-network material “ENAMIC” through micro-and nano-mechanical testing. Ceram Int. 2016;42(9):10631-7.

El-Safty S, Akhtar R, Silikas N, Watts DC. Nanomechanical properties of dental resin-composites. Dent Mater. 2012;28(12):1292-300.

Xu HH, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM. Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites. Dent Mater. 2000;16(4):248-54.

Zhang Y, Allahkarami M, Hanan JC. Measuring residual stress in ceramic zirconia-porcelain dental crowns by nanoindentation. J Mech Behav Biomed Mater. 2012;6:120-7.

Smith CM, Jiang D, Gong J, Yin L. Determination of the mechanical behavior of lithium disilicate glass ceramics by nanoindentation & scanning probe microscopy. Mater Chem Phys. 2014;148(3):1036-44.

Leung BT, Tsoi JK, Matinlinna JP, Pow EH. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. J Prosthet Dent. 2015;114(3):440-6.

Tsitrou EA, Northeast SE, Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent. 2007;35(12):897-902.

Awad D, Stawarczyk B, Liebermann A, Ilie N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J Prosthet Dent. 2015;113(6):534-40.

Lawson NC, Burgess JO. Gloss and stain resistance of ceramic‐polymer CAD/CAM restorative blocks. J Esthet Restor Dent. 2016;28 Suppl 1:S40-5.

Kelly JR, Rungruanganunt P, Hunter B, Vailati F. Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent. 2010;104(4):228-38.

Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent. 2004;92(6):557-62.

Anusavice KJ. Reducing the failure potential of ceramic-based restorations. Part 2: ceramic inlays, crowns, veneers, and bridges. Gen Dent. 1997;45(1):30-5.

Duret F, Blouin JL, Duret B. CAD-CAM in dentistry. J Am Dent Assoc. 1988;117(6):715-20.

Liu PR. A panorama of dental CAD/CAM restorative systems. Compend Contin Educ Dent. 2005;26(7):507-10.

Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28(1):44-56.

Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54-64.

Huang H. Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding. Mater Sci Eng A. 2003;345(1–2):155-63.

Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater. 2008;24(5):633-8.

Kohorst P, Junghanns J, Dittmer MP, Borchers L, Stiesch M. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy. Clin Oral Investig. 2011;15(4):527-36.

Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289-96.

Chartier T, Chaput C, Doreau F, Loiseau M. Stereolithography of structural complex ceramic parts. J Mater Sci. 2002;37(15):3141-47.

Doreau F, Chaput C, Chartier T. Stereolithography for manufacturing ceramic parts. Adv Eng Mater. 2000;2(8):493-6.

Silva NR, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J. Additive CAD/CAM process for dental prostheses. J Prosthodont. 2011;20(2):93-6.

Özkol E, Zhang W, Ebert J, Telle R. Potentials of the “Direct inkjet printing” method for manufacturing 3Y-TZP based dental restorations. J Eur Ceram Soc. 2012;32(10):2193-201.

Ebert J, Ozkol E, Zeichner A, Uibel K, Weiss O, Koops U et al. Direct inkjet printing of dental prostheses made of zirconia. J Dent Res. 2009;88(7):673-6.

SILVA, Lucas Hian da, et al. "Dental ceramics: a review of new materials and processing methods." Brazilian oral research 31 (2017)

Este artigo é uma cópia com adaptação para o português do Artigo Original "SILVA, Lucas Hian da, et al. "Dental ceramics: a review of new materials and processing methods." Brazilian oral research 31 (2017)" Esta Cópia com adaptação para o Português segue os preceitos Creative Commons CC BY 4.0 ( https://creativecommons.org/licenses/by/4.0/deed.pt_BR ) disponibilizado pelo periódico responsável pela publicação original ( https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-83242017000500203 ).

OS AUTORES DECLARAM NÃO HAVER CONFLITOS DE INTERESSE / THE AUTHORS DECLARE NO CONFLICTS OF INTEREST

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Lucas Hian da Silva , Erick de Lima, Ranulfo Benedito de Paula Miranda , Stéphanie Soares Favero, Ulrich Lohbauer , Paulo Francisco Cesar

Downloads

Download data is not yet available.