Application of Nanometric Hydroxyapatite in Bone Grafting and Dental Implantology: An Integrative Review
PDF (Português (Brasil))

Keywords

Hidroxiapatita nanométrica, regeneração óssea, cirurgia odontológica, biomateriais, implantes dentários

How to Cite

Silva , A. L. C. e, Gumert, J. V. S., Lemos , D. M. P., Conceição , A. C. L. da, Nunes, R. A. de C., Oliveira , K. R. M. de, Oliveira, C. R. de, Guedes, C. P., Honorato , H. G. de Z., da Silva Costa, G., & Reis , R. A. S. (2025). Application of Nanometric Hydroxyapatite in Bone Grafting and Dental Implantology: An Integrative Review . Brazilian Journal of Implantology and Health Sciences, 7(5), 1282–1296. https://doi.org/10.36557/2674-8169.2025v7n5p1282-1296

Abstract

Introdução: A hidroxiapatita nanométrica (nHA) é um biomaterial bioativo amplamente estudado na odontologia regenerativa por sua semelhança com a matriz mineral do osso humano, promovendo osteocondução, biocompatibilidade e integração tecidual.

Objetivo: Avaliar, por meio de uma revisão sistemática, a eficácia da nHA em procedimentos cirúrgicos odontológicos, com foco em regeneração óssea, estabilidade de implantes e desempenho clínico.

Metodologia: A pesquisa foi conduzida nas bases PubMed, Scopus, Web of Science, EMBASE e BVS, incluindo estudos clínicos, in vivo, in vitro e revisões sistemáticas publicados entre 1999 e 2024. Os dados foram extraídos, organizados tematicamente e discutidos qualitativamente conforme as diretrizes PRISMA.

Resultados: Foram incluídos 22 estudos que demonstraram que a nHA apresenta desempenho superior na preservação alveolar, levantamento de seio maxilar e cobertura de implantes. Além disso, seu uso melhora a adesão celular, acelera a neoformação óssea e favorece a osseointegração, especialmente em protocolos de carga imediata.

Conclusão: A nHA é uma alternativa segura, eficaz e promissora para a regeneração óssea em cirurgia odontológica. No entanto, estudos clínicos de longo prazo ainda são necessários para padronizar suas aplicações e validar sua superioridade frente a outros biomateriais.

https://doi.org/10.36557/2674-8169.2025v7n5p1282-1296
PDF (Português (Brasil))

References

Bordea IR, Candrea S, Alexescu GT, Bran S, Băciuț M, Băciuț G, et al. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab Rev. 2020;52(2):319-32.

Babaei M, Ebrahim-Najafabadi N, Mirzadeh M, Abdali H, Farnaghi M, Gharavi MK, et al. A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study. Biomater Adv. 2024;161:213900.

Khaled H, Atef M, Hakam M. Maxillary sinus floor elevation using hydroxyapatite nanoparticles vs tenting technique with simultaneous implant placement: a randomized clinical trial. Clin Implant Dent Relat Res. 2019;21(6):1241-52.

Nour M, Shawky M, Abaas RA, Hakam M, Atef M. Two-stage sinus lifting using nanohydroxyapatite particles versus deproteinized bovine bone: randomized clinical trial. Clin Implant Dent Relat Res. 2025;27(1):e13410.

Bral A, Mommaerts MY. In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review. J Craniomaxillofac Surg. 2016;44(4):400-12.

Suresh N, Mauramo M, Waltimo T, Sorsa T, Anil S. The effectiveness of curcumin nanoparticle-coated titanium surfaces in osteogenesis: a systematic review. J Funct Biomater. 2024;15(9):247.

Dewi AH, Ana ID. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: a systematic review. Heliyon. 2018;4(10):e00884.

Kattimani VS, Prathigudupu RS, Jairaj A, Khader MA, Rajeev K, Khader AA. Role of synthetic hydroxyapatite in socket preservation: a systematic review and meta-analysis. J Contemp Dent Pract. 2019;20(8):987-93.

Damerau JM, Bierbaum S, Wiedemeier D, Korn P, Smeets R, Jenny G, et al. A systematic review on the effect of inorganic surface coatings in large animal models and meta-analysis on tricalcium phosphate and hydroxyapatite on periimplant bone formation. J Biomed Mater Res B Appl Biomater. 2022;110(1):157-75.

Lum LB, Beirne OR, Curtis DA. Histologic evaluation of hydroxylapatite-coated versus uncoated titanium blade implants in delayed and immediately loaded applications. Int J Oral Maxillofac Implants. 1991;6(4):456-62.

von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg. 2014;18(3):243-57.

Albrektsson T, Wennerberg A. Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17(5):536-43.

Coelho PG, Lemons JE. Physico/chemical characterization and in vivo evaluation of nanothickness bioceramic depositions on alumina-blasted/acid-etched Ti-6Al-4V implant surfaces. J Biomed Mater Res A. 2009;90(2):351-61.

Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41(17):3130-46.

de Groot K. Bioceramics consisting of calcium phosphate salts. Biomaterials. 1980;1(1):47-50.

TenHuisen KS, Brown PW. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4·2H2O and Ca4(PO4)2O. J Biomed Mater Res. 1997;36(2):233-41.

Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991;2(3):187-208.

Park YS, Yi KY, Lee IS, Han CH, Jung YC. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants. 2005;20(1):31-8.

MacDonald DE, Betts F, Stranick M, Doty S, Boskey AL. Physicochemical study of plasma-sprayed hydroxyapatite-coated implants in humans. J Biomed Mater Res. 2001;54(4):480-90.

Oh S, Tobin E, Yang Y, Carnes DL Jr, Ong JL. In vivo evaluation of hydroxyapatite coatings of different crystallinities. Int J Oral Maxillofac Implants. 2005;20(5):726-31.

Jimbo R, Coelho PG, Bryington M, Baldassarri M, Tovar N, Currie F, et al. Nano hydroxyapatite-coated implants improve bone nanomechanical properties. J Dent Res. 2012;91(12):1172-7.

Lin A, Wang CJ, Kelly J, Gubbi P, Nishimura I. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Int J Oral Maxillofac Implants. 2009;24(5):808-16.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Ana Luísa Castro e Silva , Jennifer Vera Santos Gumert, Dyego Matielo Peres Lemos , Aléxia Caroline Leandro da Conceição , Rafael Avellar de Carvalho Nunes, Klarice Rafaella Menezes de Oliveira , Conrado Ribeiro de Oliveira, Cristiana Pereira Guedes, Henrique Galvão de Zúniga Honorato , Gabriel da Silva Costa, Rafael Arantes Soares Reis

Downloads

Download data is not yet available.
1 1