Abstract
Community-acquired bacterial meningitis is a severe central nervous system infection characterized by rapid progression and high morbidity and mortality rates. Early diagnosis remains a challenge due to the nonspecificity of symptoms and limitations of conventional laboratory methods. In recent years, technological advancements, including artificial intelligence (AI) and advanced molecular testing, have improved diagnostic accuracy and optimized clinical management. This study reviews the main challenges in the diagnosis, management, and treatment of bacterial meningitis, emphasizing the application of emerging technologies. A systematic literature review was conducted using the PRISMA methodology, selecting articles published between 2018 and 2025 from indexed databases. Studies addressing clinical, epidemiological, microbiological, and therapeutic aspects of the disease were included. The results indicate that techniques such as multiplex PCR have enhanced pathogen detection, while AI algorithms have aided in predicting clinical outcomes and identifying antimicrobial resistance. However, challenges persist, including the need for large-scale validation of these technologies and expanded access to advanced diagnostic methods in low- and middle-income countries. It is concluded that integrating new technological approaches into the diagnosis and treatment of bacterial meningitis can significantly improve patient outcomes and mitigate the impact of antimicrobial resistance.
References
BERENGUER, Juan Ramón. El Hospital de Dénia acelera diagnóstico de meningitis con innovadora técnica de PCR. Cadena SER, 2025. Disponível em: https://cadenaser.com/comunitat-valenciana/2025/01/24/el-hospital-de-denia-reduce-los-tiempos-de-diagnostico-de-meningitis-y-encefalitis-con-nueva-tecnica-de-pcr-radio-denia/. Acesso em: 5 mar. 2025.
DELIRAN, Shahrzad S.; BROUWER, Matthijs C.; VAN DE BEEK, Diederik. Intracerebral haemorrhage in bacterial meningitis. Journal of Infection, v. 85, n. 3, p. 301-305, 2022. DOI: https://doi.org/10.1016/j.jinf.2022.06.013.
GREENLEE, James E. Bacterial Meningitis in Adults. The New England Journal of Medicine, v. 386, p. 1257-1268, 2022. DOI: https://doi.org/10.1056/NEJMra2106495.
MOHANTY, Salini et al. Increased Risk of Long-Term Disabilities Following Childhood Bacterial Meningitis in Sweden. JAMA Network Open, v. 7, n. 1, p. e2352402, 2024. DOI: https://doi.org/10.1001/jamanetworkopen.2023.52402.
VAN ETTEKOVEN, Cornelis N. et al. Global Case Fatality of Bacterial Meningitis During an 80-Year Period: A Systematic Review and Meta-Analysis. JAMA Network Open, v. 7, n. 8, p. e2424802, 2024. DOI: https://doi.org/10.1001/jamanetworkopen.2024.24802.
VAN SOEST, Thijs M. et al. Bacterial meningitis presenting with a normal cerebrospinal fluid leukocyte count. Journal of Infection, v. 84, n. 5, p. 615-620, 2022. DOI: https://doi.org/10.1016/j.jinf.2022.03.018.
WHO - WORLD HEALTH ORGANIZATION. Global Roadmap to Defeat Meningitis by 2030. Geneva: WHO, 2024. Disponível em: https://www.who.int/publications/i/item/9789240030309. Acesso em: 5 mar. 2025.
Zimmermann, Philipp; Curtis, Nigel. The Clinical Features of Bacterial Meningitis in Children: A Systematic Review and Meta-Analysis. The Lancet Infectious Diseases, v. 21, n. 3, p. 303-314, 2021. DOI: https://doi.org/10.1016/S1473-3099(20)30534-4.
BRASIL. Ministério da Saúde. Diretrizes para enfrentamento das meningites até 2030. Brasília: Ministério da Saúde, 2024. 84 p. Disponível em: https://bvsms.saude.gov.br. Acesso em: 5 mar. 2025.
BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de Vigilância em Saúde: volume 1. 1. ed. atual. Brasília: Ministério da Saúde, 2017. 3 v. ISBN 978-85-334-2235-3. Disponível em: https://www.saude.gov.br/bvs. Acesso em: 5 mar. 2025.
GUPTA, R.; KUMAR, S.; SINGH, P. Machine Learning-Based Prognostic Models for Bacterial Meningitis: A Clinical Decision Support System Approach. Journal of Medical Systems, v. 46, n. 8, p. 1-14, 2022. DOI: 10.1007/s10916-022-01796-5.
KIM, H.; LEE, J.; CHOI, W. AI-Driven Antimicrobial Resistance Prediction in Bacterial Meningitis Pathogens Using Genomic Data. Scientific Reports, v. 11, p. 12450, 2021. DOI: 10.1038/s41598-021-91735-8.
PATEL, M.; BROWN, T.; WILSON, D. Challenges and Opportunities of AI Integration in Infectious Disease Management. Artificial Intelligence in Medicine, v. 147, p. 102474, 2024. DOI: 10.1016/j.artmed.2024.102474.
ZHANG, Y.; LI, X.; WANG, L. Deep Learning-Based Diagnosis of Bacterial Meningitis Using Cerebrospinal Fluid Biomarkers. Neuroinformatics, v. 21, n. 2, p. 349-362, 2023. DOI: 10.1007/s12021-023-09541-2.
HASBUN R. Progress and Challenges in Bacterial Meningitis: A Review. JAMA. 2022 Dec 6;328(21):2147-2154. doi: 10.1001/jama.2022.20521. Erratum in: JAMA. 2023 Feb 14;329(6):515. doi: 10.1001/jama.2023.0570. PMID: 36472590.
DAVIS LE. Acute Bacterial Meningitis. Continuum (Minneap Minn). 2018 Oct;24(5, Neuroinfectious Disease):1264-1283. doi: 10.1212/CON.0000000000000660. PMID: 30273239.
VILLALPANDO-CARRIÓN S, HENAO-MARTÍNEZ AF, FRANCO-PAREDES C. Epidemiology and Clinical Outcomes of Bacterial Meningitis in Children and Adults in Low- and Middle-Income Countries. Curr Trop Med Rep. 2024 Jun;11(2):60-67. doi: 10.1007/s40475-024-00316-0. Epub 2024 Feb 22. PMID: 39006487; PMCID: PMC11244613.
NAKAMURA T, et al. The Global Landscape of Pediatric Bacterial Meningitis Data Reported to the World Health Organization-Coordinated Invasive Bacterial Vaccine-Preventable Disease Surveillance Network, 2014-2019. J Infect Dis. 2021 Sep 1;224(12 Suppl 2):S161-S173. doi: 10.1093/infdis/jiab217. PMID: 34469555; PMCID: PMC8409679.
ZAINEL, A.; MITCHELL, H.; SADARANGANI, M. Meningite bacteriana em crianças: complicações neurológicas, fatores de risco associados e prevenção. Microorganismos, v. 9, n. 3, p. 535, 2021. DOI: 10.3390/microorganismos9030535.
MADLENER M, JOOST I. Ambulant erworbene bakterielle Meningitis des Erwachsenen [Community acquired bacterial meningitis in adults]. Inn Med (Heidelb). 2025 Feb;66(2):190-198. German. doi: 10.1007/s00108-025-01851-2. Epub 2025 Jan 31. PMID: 39888404.
THUNSTEDT C, PALLEIS C, WISCHMANN J, HECK S, DIMITRIADIS K, KLEIN M. Positive real-time PCR in pneumococcal meningitis 12 hours after initiation of antibiotic therapy - case report. BMC Neurol. 2025 Jan 22;25(1):32. doi: 10.1186/s12883-025-04033-7. PMID: 39844085; PMCID: PMC11753072.
DE ALMEIDA SM, FURLAN SMP, CRETELLA AMM, LAPINSKI B, NOGUEIRA K, COGO LL, VIDAL LRR, NOGUEIRA MB. Comparison of Cerebrospinal Fluid Biomarkers for Differential Diagnosis of Acute Bacterial and Viral Meningitis with Atypical Cerebrospinal Fluid Characteristics. Med Princ Pract. 2020;29(3):244-254. doi: 10.1159/000501925. Epub 2019 Sep 3. PMID: 31480054; PMCID: PMC7315170.
XU Y, WANG J, QIN X, LIU J. Advances in the pathogenesis and treatment of pneumococcal meningitis. Virulence. 2024 Dec;15(1):2387180. doi: 10.1080/21505594.2024.2387180. Epub 2024 Aug 27. PMID: 39192572; PMCID: PMC11364070.
OUATTARA M, TAMBOURA M, KAMBIRÉ D, LÊ KA, VAN PHAN T, VELUSAMY S, NGUYEN HA, TRANG DVT, LESSA FC, IIJIMA M, NGUYEN DT, SCHWARTZ SB, MCGEE L, TRAORÉ RO, BEALL B. Triplex Direct Quantitative Polymerase Chain Reaction for the Identification of Streptococcus pneumoniae Serotypes. J Infect Dis. 2021 Sep 1;224(12 Suppl 2):S204-S208. doi: 10.1093/infdis/jiab056. PMID: 34469558; PMCID: PMC8414907.
ÁVILA HERNÁNDEZ FP, SEVILLA FUENTES S, SERRANO CJ. Tuberculous meningitis as an underlying cause of rapid neurological deterioration in a patient with a history of psychiatric disorder: Clinical case report. Diagn Microbiol Infect Dis. 2025 Mar;111(3):116625. doi: 10.1016/j.diagmicrobio.2024.116625. Epub 2024 Nov 24. PMID: 39616687.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Carina Toledo Scoparo Barioni, Nilene Sales