Abstract
O câncer colorretal (CCR) é uma das neoplasias mais prevalentes no mundo, com uma etiologia multifatorial que envolve fatores genéticos e epigenéticos. No CCR hereditário, como na síndrome de Lynch, mutações em genes de reparo do DNA aumentam significativamente o risco da doença. Já no CCR esporádico, alterações epigenéticas, como a hipermetilação do promotor de genes supressores tumorais, contribuem para a instabilidade genômica e a progressão tumoral. Além da predisposição genética, fatores ambientais, como dieta, obesidade e inflamação crônica, desempenham um papel fundamental na modulação da expressão gênica e nas modificações epigenéticas associadas ao desenvolvimento da neoplasia. O rastreamento precoce, principalmente por meio da colonoscopia, é essencial para a redução da incidência e da mortalidade, especialmente em indivíduos com predisposição genética. Avanços na identificação de biomarcadores genéticos e epigenéticos possibilitam um diagnóstico mais precoce e uma abordagem terapêutica personalizada, incluindo o uso de imunoterapias e estratégias de quimioprevenção. Dessa forma, a compreensão integrada dos fatores genéticos e epigenéticos no CCR contribui para um manejo mais eficaz da doença, permitindo melhores desfechos clínicos e reduzindo seu impacto na saúde pública.
References
Ahadova, A., et al. The "unnatural" history of colorectal cancer in Lynch syndrome: Lessons from colonoscopy surveillance. Int J Cancer, 2021;148(4):800-11.
Bogomilova Kamburova, Z., Lubenova Popovska, S., Stefanova Kovacheva, K., Todorov Petrov, K., Enkova Nikolova, S. Familial Lynch syndrome with early age of onset and confirmed splice site mutation in MSH2: A case report. Biomed Rep, 2022;16(5):39.
Burn, J., et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet, 2020;395(10240):1855-63.
Cerretelli, G., et al. Molecular pathology of Lynch syndrome. J Pathol, 2020;250(5):518-31.
Chevalier, E., Benamouzig, R. Chemoprevention in hereditary digestive neoplasia: A comprehensive review. Ther Adv Gastroenterol, 2023;16:17562848231215585.
Cui, S., et al. MLH1 Exon 12 Gene Deletion Leading to Lynch Syndrome: A Case Report. Oncol Res Treat, 2021;44(7-8):414-21.
Durhuus, J. A., et al. Colorectal cancer in adolescents and young adults with Lynch syndrome: a Danish register-based study. BMJ Open, 2021;11(12).
Engel, C., et al. Associations of Pathogenic Variants in MLH1, MSH2, and MSH6 With Risk of Colorectal Adenomas and Tumors and With Somatic Mutations in Patients With Lynch Syndrome. Gastroenterology, 2020;158(5):1326-33.
Fan, A., Lu, Y. Immunotherapy in colorectal cancer: current achievements and future perspective. Int J Biol Sci, 2021;17(14):3837-49.
Gambini, D., et al. Lynch Syndrome: From Carcinogenesis to Prevention Interventions. Cancers, 2022;14(17):4102.
Kanani, A., Søreide, K. Neoadjuvant immunotherapy in primary and metastatic colorectal cancer. Br J Surg, 2021;108(12):1417-25.
Kastrinos, F., et al. Gene-Specific Variation in Colorectal Cancer Surveillance Strategies for Lynch Syndrome. Gastroenterology, 2021;161(2):453-462.e15.
Mirabdolhosseini, S. M., et al. Rare single-nucleotide variants of MLH1 and MSH2 genes in patients with Lynch syndrome. Cancer Rep (Hoboken), 2024;7(1).
Miyakura, Y., et al. Current practice of colonoscopy surveillance in patients with Lynch syndrome: A multicenter retrospective cohort study in Japan. DEN Open, 2022;3(1).
Perrod, G., et al. Colorectal cancer screening in Lynch syndrome: Indication, techniques and future perspectives. Dig Endosc, 2021;33(4):520-8.
Radulescu, S. Overview of the Genetic Aspects of Lynch Syndrome. Romanian Journal of Military Medicine, 2023;126:26-34.
Sánchez, A., et al. Quality of Colonoscopy Is Associated With Adenoma Detection and Postcolonoscopy Colorectal Cancer Prevention in Lynch Syndrome. Clin Gastroenterol Hepatol, 2022;20(3):611-621.e9.
Scott, A., et al. Saturation-scale functional evidence supports clinical variant interpretation in Lynch syndrome. Genome Biol, 2022;23(1):266.
Serrano, D., et al. Aspirin Colorectal Cancer Prevention in Lynch Syndrome: Recommendations in the Era of Precision Medicine. Genes, 2022;13(3):460.
Sievänen, T., et al. Body Weight, Physical Activity, and Risk of Cancer in Lynch Syndrome. Cancers (Basel), 2021;13(8):1849.
Silinskaite, U., et al. A Novel Mutation of MSH2 Gene in a Patient with Lynch Syndrome Presenting with Thirteen Metachronous Malignancies. J Clin Med, 2023;12(17):5502.
Soualy, A., et al. Effect of chemoprevention by low-dose aspirin of new or recurrent colorectal adenomas in patients with Lynch syndrome (AAS-Lynch): study protocol for a multicenter, double-blind, placebo-controlled randomized controlled trial. Trials, 2020;21(1):764.
Sumransub, N., Lou, E. Advances and new frontiers for immunotherapy in colorectal cancer: setting the stage for neoadjuvant success? Mol Ther Oncolytics, 2021;22:108-19.
Taniguchi, F., et al. Adequacy evaluation of the annual colonoscopic surveillance and individual difference of disease phenotypes in Lynch syndrome. Jpn J Clin Oncol, 2020;50(6):635-42.
Williams, D., et al. Somatic mismatch repair testing in evaluation of Lynch syndrome: The gap between preferred and current practices. J Genet Couns, 2020;29(5):728-36.
Zajo, K., et al. Lynch syndrome-associated colorectal cancer in a 16-year-old girl due to a de novo MSH2 mutation. BMJ Case Rep, 2020;13(7).

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Calina Helena Paiva de Barros Cunha, Gabriela Santos de Souza, Patricia Nunes Crispim, Luiza Carneiro Mota