Comparative Analysis of Surface Roughness of Ti-45Nb Alloy and Commercially Pure Titanium in Osseointegrated Implants: Exploratory Study
PDF (Português (Brasil))

Keywords

Dental implants
Roughness
Surface properties
Treatment surface

How to Cite

dos Santos Siqueira, A., Mitsunari Takeshita , W., Griza, S., Rodrigues Garção, J. V., Paggi, M. L., da Silva Reis, M. M., Dias Altidis, J., & Treto, C. L. (2024). Comparative Analysis of Surface Roughness of Ti-45Nb Alloy and Commercially Pure Titanium in Osseointegrated Implants: Exploratory Study. Brazilian Journal of Implantology and Health Sciences, 6(12), 2583–2596. https://doi.org/10.36557/2674-8169.2024v6n12p2583-2596

Abstract

This study evaluated the effect of double acid etching on the surface treatment of commercially pure titanium (Ti-cp) dental implants compared to Titanium-45 Niobium (Ti-45Nb) implants. The control group included four Ti-cp implants, while the test group consisted of four Ti-45Nb implants treated with the same surface protocol as the control group, and one untreated Ti-45Nb implant. The surface treatment protocol—double acid etching with 30% sulfuric acid and 30% nitric acid solutions—was developed by the implant manufacturer. The surface topography of all samples was analyzed using scanning electron microscopy (SEM) at magnifications of 500x, 1000x, 2000x, and 4000x, and images were processed with ImageJ software to assess roughness parameters (Ra and Rq). Data were statistically analyzed using the Shapiro-Wilk test, Levene’s test, ANOVA, and Tukey’s post-hoc test. Tukey’s test revealed statistically significant differences in roughness values between groups. The findings showed that the same surface treatment protocol effective for Ti-cp implants was ineffective in modifying the surface roughness of Ti-45Nb implants. This suggests that Ti-45Nb exhibits greater resistance to material removal under standard acid etching conditions. The optimal surface treatment for Ti-45Nb dental implants requires further investigation, as this study highlights the need for alternative methods tailored to the unique properties of the Ti-45Nb alloy.

https://doi.org/10.36557/2674-8169.2024v6n12p2583-2596
PDF (Português (Brasil))

References

Zhang T, Ou P, Ruan J, Yang H. Nb-Ti-Zr alloys for orthopedic implants. J Biomater Appl. 2021;35(10):1284-1293.

Wu H, Chen X, Kong L, Liu P. Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. Materials. 2023; 16(21):6860.

Ou P, Hao C, Liu J, He R, Wang B, Ruan J. Cytocompatibility of Ti-xZr alloys as dental implant materials. J Mater Sci Mater Med. 2021;32(5):50.

Santos DMC, Signor F, Schneider AD, Bender CR, Mareze PH, Daudt NF. Manufacturing of Ti-Nb alloys Using Coarse Nb Powders. Materials Research 2024; 27(6): e20230478.

Pitchi CS, Priyadarshini A, Sana G, Narala SKR. A Review on Alloy Composition and Synthesis of β-Titanium Alloys for Biomedical Applications. Materials Today: Proceedings 2020; 26(2): 3297–3304.

Nan Hu, Lingxia Xie, Qing Liao, Ang Gao, Yanyan Zheng, et al. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement. Acta Biomater. 2021;126:524-536.

Völker B, Jäger N, Calin M, Zehetbauer MJ, Eckert J, Hohenwarter, A. Hohenwarter, Influence of testing orientation on mechanical properties of Ti45Nb deformed by high pressure torsion. Materials & Design. 2017; 114:40–46.

Delshadmanesh M, Khatibi G, Ghomsheh MZ, Lederer M, Zehetbauer M, Danninger H. Influence of microstructure on fatigue of biocompatible β-phase Ti-45Nb. Materials Science and Engineering: A. 2017; 706: 83-94.

Helth A, Pilz S, Kirsten T, et al. Effect of thermomechanical processing on the mechanical biofunctionality of a low modulus Ti-40Nb alloy. J Mech Behav Biomed Mater. 2017;65:137-150.

Xu Z, Yate L, Qiu Y, et al. Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Mater Sci Eng C Mater Biol Appl. 2019;96:166-175.

Hussein MA, Azeem MA, Madhan Kumar A, Saravanan S, Ankah N, Sorour AA. Design and processing of near-β Ti–Nb–Ag alloy with low elastic modulus and enhanced corrosion resistance for orthopedic implant. J Mater Res Technol. 2023;24:259-73.

Silva RS da, Ribeiro AA. Characterization of Ti-35Nb alloy surface modified by controlled chemical oxidation for surgical implant applications. Revista Matéria (Rio de Janeiro). 2019;24(3): e-12396.

Alghamdi HS, Jansen JA. The development and future of dental implants. Dent Mater J 2020;39(2):167-172.

Hotchkiss KM, Sowers KT, Olivares-Navarrete R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater 2019; 35:176–184.

Balderrama ÍF, Stuani VT, Cardoso MV, et al. The influence of implant surface roughness on decontamination by antimicrobial photodynamic therapy and chemical agents: A preliminary study in vitro. Photodiagnosis Photodyn Ther. 2021;33:102105.

Almohareb RA, Barakat R, Albohairy F. New heat-treated vs electropolished nickel-titanium instruments used in root canal treatment: Influence of autoclave sterilization on surface roughness. PLoS One. 2022;17(3):e0265226.

Mendes GN, Takeshita WM, Brasileiro BF, Trento CL. Comparative effect of the extended use of acids for surface treatment of osseointegrated implants. A laboratory study.J Osseointegr 2024; 16(1): 65-71.

Scarano A, Tari Rexhep S, Leo L, Lorusso F. Wettability of implant surfaces: Blood vs autologous platelet liquid (APL). J Mech Behav Biomed Mater. 2022;126:104773.

Yeo IL. Modifications of dental implant surfaces at the micro- and nano-level for enhanced osseointegration. Materials (Basel). 2019;13(1):89.

Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112-131.

Almas K, Smith S, Kutkut A. What is the best micro and macro dental implant topography? Dent Clin North Am. 2019;63(3):447–60.

Rupp F, Liang L, Geis-Gerstorfer J, et al. Surface characteristics of dental implants: a review. Dent Mater. 2018;34(1):40–57.

Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 2019;21 Suppl 1:4-7.

Elias CN. Factors affecting the success of dental implants. Implant Dentistry. 2011;14: 319-363.

Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants. 2000;15(3):331-344.

Coutinho PM, Elias CN. Roughness and wettability of titanium for treated dental implant surface. Rev. bras. odontol., Rio de Janeiro. 2009. 66(2): 234-238.

Leite GB, Fonseca YR, Gomes AV, Elias CN. Relationship between 3D surface roughness parameters and wettability in titanium with micrometric and sub-micrometric grains sizes. Revista Matéria (Rio de Janeiro). 2020;25(2): e-12655.

Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1 Suppl):25-30

Kuczmaszewski J, Zaleski K, Matuszak JM, Madry J. Testing geometric precision and surface roughness of titanium alloy thin-walled elements processed with milling. In: Diering, M, Wieczorowski M, Brown CA, eds. Advances in Manufacturing II. 1st ed. Switzerland: Springe; 2019: 95-106.

Zhang Y, Sun D, Cheng, Tsoi JKH, Chen J. Mechanical and biological properties of Ti–(0–25 wt%)Nb alloys for biomedical implants application. Regenerative Biomaterials. 2020; 7(1):119–127.

Bai Y, Deng Y, Zheng Y, et al. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus. Mater Sci Eng C Mater Biol Appl. 2016;59:565-576.

Lee CM, Ju CP, Chern Lin JH. Structure-property relationship of cast Ti-Nb alloys. J Oral Rehabil. 2002;29(4):314-322.

Gostin PF, Helth A, Voss A, et al. Surface treatment, corrosion behavior, and apatite-forming ability of Ti-45Nb implant alloy. J Biomed Mater Res B Appl Biomater. 2013;101(2):269-278.

Zorn G, Lesman A, Gotman I. Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation. Surface and Coatings Technology. 2006; 201(3-4): 612–618.

Traini T, Murmura G, Sinjari B, Perfetti G, Scarano A, D’Arcangelo C, Caputi S. The Surface Anodization of Titanium Dental Implants Improves Blood Clot Formation Followed by Osseointegration. Coatings. 2018; 8(7):252.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Allancardi dos Santos Siqueira, Wilton Mitsunari Takeshita , Sandro Griza, João Victor Rodrigues Garção, Matheus Leonel Paggi, Matheus Mariano da Silva Reis, Jaqueline Dias Altidis, Cleverson Luciano Treto

Downloads

Download data is not yet available.
1 1