AUTOGENOUS DENTIN GRAFT FOR ALVEOLAR BONE HEALING: AN INTEGRATIVE LITERATURE REVIEW
PDF (Português (Brasil))

Keywords

Dentin
Graft
Bone regeneration

How to Cite

Lima, C. M. de A., Silva, F. M. da C., Vasconcelos, M. E. D., Silva, G. G. T. e, Medeiros Júnior, M. D., Ramos, L. V. S., Lima, T. C. de, Mendonça, P. G. T. N., Nunes, G. J. de S., Silva, V. M. D. S., Feitoza, B. A. F., Borges, R. de O., & Mota, M. N. dos S. (2024). AUTOGENOUS DENTIN GRAFT FOR ALVEOLAR BONE HEALING: AN INTEGRATIVE LITERATURE REVIEW. Brazilian Journal of Implantology and Health Sciences, 6(11), 1220–1232. https://doi.org/10.36557/2674-8169.2024v6n11p1220-1232

Abstract

Introduction: Dentin matrix has recently been considered as an alternative for grafting, given its structural similarity to alveolar bone. Grafts can be prepared in mineralized form, focusing on organic and inorganic components, or demineralized form, exposing the collagen structure and allowing the release of growth factors. Objective: To analyze the applicability and effectiveness, through a literature review, of autogenous dentin grafting for alveolar bone healing. Methodology: An integrative literature review was conducted using PubMed, Science Direct, and Lilacs databases, with the descriptors "Dentin," "Graft," and "Bone Regeneration" according to established eligibility criteria. Results: Tenn articles were selected for the construction of this study. Conclusion: Autogenous dentin grafting appears to be a promising treatment for bone regeneration; however, further research is needed regarding protocols and comparison with other treatments.

https://doi.org/10.36557/2674-8169.2024v6n11p1220-1232
PDF (Português (Brasil))

References

BANG, G.; URIST, M. R. Bone induction in excavation chambers in matrix of decalcified dentin. Arch. Surg., v. 94, p. 781-789, 1967. DOI: 10.1001/archsurg.1967.01330120035008. Disponível em: https://pubmed.ncbi.nlm.nih.gov/4226076/. Acesso em: 20 jul. 2024.

BONO, N.; TARSINI, P.; CANDIANI, G. Demineralized Dentin and Enamel Matrices as Suitable Substrates for Bone Regeneration. J Appl Biomater Funct Mater, v. 15, p. 236-243, 2017. DOI: 10.5301/jabfm.5000373. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28731486/. Acesso em: 20 jul. 2024.

BRUNELLO, G.; ZANOTTI, F.; SCORTECCI, G.; SAPOZNIKOV, L.; SIVOLELLA, S.; ZAVAN, B. Dentin particulate for bone regeneration: an in vitro study. International Journal of Molecular Sciences, v. 23, n. 16, p. 9283, 2022. DOI: 10.3390/ijms23169283. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36012558/. Acesso em: 20 jul. 2024.

FERRAZ, M. P. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials, v. 16, p. 4117, 2023. DOI: 10.3390/ma16114117. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254799/. Acesso em: 20 jul. 2024.

INCHINGOLO, A. M.; PATANO, A.; DI PEDE, C.; INCHINGOLO, A. D.; PALMIERI, G.; DE RUVO, E.; MALCANGI, G. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. Journal of Functional Biomaterials, v. 14, n. 3, p. 132, 2023. DOI: 10.3390/jfb14030132. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36976056/. Acesso em: 20 jul. 2024.

KIM, Y. K.; KIM, S. G.; BYEON, J. H.; LEE, H. J.; UM, I. U.; LIM, S. C.; KIM, S. Y. Development of a novel bone grafting material using autogenous teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodiol., v. 109, p. 496–503, 2010. DOI: 10.1016/j.tripleo.2009.10.017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/20060336/. Acesso em: 20 jul. 2024.

KIM, Y. K.; KIM, S. G.; OH, J. S.; JIN, S. C.; SON, J. S.; KIM, S. Y.; LIM, S. Y. Analysis of the inorganic component of autogenous tooth bone graft material. J. Nanosci. Nanotechnol., v. 11, p. 7442-7445, 2011. DOI: 10.1166/jnn.2011.4857. Disponível em: https://pubmed.ncbi.nlm.nih.gov/22103215/. Acesso em: 20 jul. 2024.

KOGA, T.; MINAMIZATO, T.; KAWAI, Y.; MIURA, K. I. T.; NAKATANI, Y.; SUMITA, Y.; ASAHINA, I. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLoS ONE, v. 11, p. e0147235, 2016. DOI: 10.1371/journal.pone.0147235. Disponível em: https://pubmed.ncbi.nlm.nih.gov/26795024/. Acesso em: 20 jul. 2024.

KOZUMA, W.; KON, K.; KAWAKAMI, S.; BOBOTHIKE, A.; IIJIMA, H.; SHIOTA, M.; KASUGAI, S. Osteoconductive potential of a hydroxyapatite fiber material with magnesium: In vitro and in vivo studies. Dent. Mater. J., v. 38, p. 771-778, 2019. DOI: doi: 10.4012/dmj.2018-333. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31257306/. Acesso em: 20 jul. 2024.

LI, R.; GUO, W.; YANG, B.; GUO, L.; SHENG, L.; CHEN, G.; LI, Y.; ZOU, Q.; XIE, D.; AN, X.; et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials, v. 32, p. 4525-4538, 2011. DOI: 10.1016/j.biomaterials.2011.03.008. Disponível em: https://pubmed.ncbi.nlm.nih.gov/21458067/. Acesso em: 20 jul. 2024.

MAZZUCCHI, G.; MARIANO, A.; SERAFINI, G.; LAMAZZA, L.; SCOTTO D'ABUSCO, A.; DE BIASE, A.; LOLLOBRIGIDA, M. Osteoinductive Properties of Autologous Dentin: An Ex Vivo Study on Extracted Teeth. J Funct Biomater, v. 15, n. 6, p. 162, jun. 2024. DOI: 10.3390/jfb15060162. Disponível em: https://pubmed.ncbi.nlm.nih.gov/38921535/. Acesso em: 20 jul. 2024.

MINETTI, E.; PALERMO, A.; CONTESSI, M.; GAMBARDELLA, U.; SCHMITZ, J.; GIACOMETTI, E.; CELKO, M.; TRISI, P. Autologous tooth graft for maxillary sinus augmentation: A multicenter clinical study. Int J Growth Factors Stem Cells Dent, v. 2, p. 45, 2019. DOI: 10.4103/GFSC.GFSC_13_19. Disponível em: https://www.researchgate.net/publication/338068241_Autologous_tooth_graft_for_maxillary_sinus_augmentation_A_multicenter_clinical_study. Acesso em: 20 jul. 2024.

MINETTI, E.; PALERMO, A.; INCHINGOLO, A. D.; PATANO, A.; VIAPIANO, F.; CIOCIA, A. M.; DE RUVO, E.; MANCINI, A.; INCHINGOLO, F.; SAURO, S.; MALCANGI, G.; DIPALMA, G.; INCHINGOLO, A. M. Autologous tooth for bone regeneration: dimensional examination of Tooth Transformer® granules. Eur Rev Med Pharmacol Sci, v. 27, n. 12, p. 5421-5430, jun. 2023. DOI: 10.26355/eurrev_202306_32777. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37401277/. Acesso em: 20 jul. 2024.

MINETTI, E.; PALERMO, A.; MALCANGI, G.; INCHINGOLO, A. D.; MANCINI, A.; DIPALMA, G.; INCHINGOLO, A. M. Dentin, Dentin Graft, and Bone Graft: Microscopic and Spectroscopic Analysis. Journal of Functional Biomaterials, v. 14, n. 5, p. 272, 2023. DOI: 10.3390/jfb14050272. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37233382/. Acesso em: 20 jul. 2024.

MORJARIA, K. R.; WILSON, R.; PALMER, R. M. Bone healing after tooth extraction with or without an intervention: A systematic review of randomized controlled trials. Clin. Implant Dent. Relat. Res., v. 16, p. 1-20, 2014. DOI: doi: 10.1111/j.1708-8208.2012.00450.x. Disponível em: https://pubmed.ncbi.nlm.nih.gov/22405099/. Acesso em: 20 jul. 2024.

MURATA, Masaru; NEZU, Takashi; TAKEBE, Hiroaki; HIROSE, Yukito; OKUBO, Naoto; SAITO, Takashi; AKAZAWA, Toshiyuki . Human dentin materials for minimally invasive bone regeneration: Animal studies and clinical cases. Journal of Oral Biosciences, v. 65, n. 1, p. 13-18, 2023. Acesso em: 15 jul. 2024.

NGUYEN, Nhan Thanh; LE, Son Hoang; NGUYEN, Bich-Ly Thi. The effect of autologous demineralized dentin matrix on postoperative complications and wound healing following lower third molar surgery: A split-mouth randomized clinical trial. Journal of Dental Sciences, 2024. Acesso em: 15 jul. 2024.

OGUIĆ, M.; ČANDRLIĆ, M.; TOMAS, M.; VIDAKOVIĆ, B.; BLAŠKOVIĆ, M.; JERBIĆ RADETIĆ, A. T.; CVIJANOVIĆ PELOZA, O. Osteogenic potential of autologous dentin graft compared with bovine xenograft mixed with autologous bone in the esthetic zone: radiographic, histologic and immunohistochemical evaluation. International journal of molecular sciences, v. 24, n. 7, p. 6440, 2023. DOI: 10.3390/ijms24076440. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37047413/. Acesso em: 20 jul. 2024.

ÖZKAHRAMAN, N.; BALCIOĞLU, N. B.; SOLUK TEKKESIN, M.; ALTUNDAĞ, Y.; YALÇIN, S. Evaluation of the Efficacy of Mineralized Dentin Graft in the Treatment of Intraosseous Defects: An Experimental In Vivo Study. Medicina (Kaunas), v. 58, n. 1, p. 103, jan. 2022. DOI: 10.3390/medicina58010103. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777758/. Acesso em: 20 jul. 2024.

TANG, G.; LIU, Z.; LIU, Y.; YU, J.; WANG, X.; TAN, Z.; YE, X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front. Cell Dev. Biol., v. 9, p. 665813, 2021. DOI: 10.3389/fcell.2021.665813. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34026758/. Acesso em: 20 jul. 2024.

SÁNCHEZ-LABRADOR, L.; MARTÍN-ARES, M.; ORTEGA-ARANEGUI, R.; LÓPEZ-QUILES, J.; MARTÍNEZ-GONZÁLES, J. M. Autogenous Dentin Graft in Bone Defects after Lower Third Molar Extraction: A Split-Mouth Clinical Trial. Materials (Basel). v. 13, n. 14, p. 3090, jul. 2020. DOI: 10.3390/ma13143090. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32664303/. Acesso em: 20 jul. 2024.

SAPOZNIKOV, L.; HAIM, D.; ZAVAN, B.; SCORTECCI, G.; HUMPHREY, M. A novel porcine dentin-derived bone graft material provides effective site stability for implant placement after tooth extraction: a randomized controlled clinical trial. Clin. Oral Investig. v. 27, n. 6, p. 2899-2911, jun. 2023. DOI: 10.1007/s00784-023-04888-5. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36826514/. Acesso em: 20 jul. 2024.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Catarina Melo de Andrade Lima, Fernanda Maria da Cunha Silva, Maria Eduarda Darigo Vasconcelos, Giovanna Gabrielle Torquato e Silva, Martinho Dinoá Medeiros Júnior, Lucas Viana Silva Ramos, Taís Carvalho de Lima, Pedro Gabriell Thorpe Nunes Mendonça, Guilherme Jonnes de Sobral Nunes, Victor Miguel Dos Santos Silva, Beatriz Amélia Faustino Feitoza, Rodrigo de Oliveira Borges, Matheus Nole dos Santos Mota