A ADSORÇÃO DE PROTEINAS NO ESPAÇO DE OSTEOCONDUÇÃO
PDF (Português (Brasil))

Keywords

osseointegration
dental implants
titanium implants
biomaterials
protein adsorption

How to Cite

Rosa de Almeida, A. C. ., Serqueira da Silva, N. ., Nascimento, M., Martins de Souza, B. ., & Tany Posh, A. . (2022). A ADSORÇÃO DE PROTEINAS NO ESPAÇO DE OSTEOCONDUÇÃO. Brazilian Journal of Implantology and Health Sciences, 4(4), 08–16. https://doi.org/10.36557/2674-8169.2022v4n4p08-16

Abstract

Introduction: Osseointegration is a process that allows the interaction of titanium implants with bone tissue. This interface is permeated by a protein anchoring so that the biomaterial is not in direct contact with the periosteum. Objective: This literature review aims to present the process of protein adsorption in osseointegrated implants, highlighting the main proteins that participate in this process. Methodology: The search was conducted on the PubMed, SciELO and Google Academic platforms with articles published between 2008 and 2022 in Portuguese and English. Results: Soon after implant installation, a provisional fibrin matrix is formed (angiogenesis process) that precedes osseointegration. Afterwards, in the osteoconduction space, there is an interaction between the titanium implant surface and proteins from the cell membrane. Thus, this protein interaction will support the peri-implant ligament. However, different factors such as implant surface properties and protein properties may influence this adsorption process. Conclusion: In this sense, it can be assumed that protein adsorption is an indispensable mechanism for successful osseointegration in titanium and titanium alloy implants.

 

https://doi.org/10.36557/2674-8169.2022v4n4p08-16
PDF (Português (Brasil))

References

Nascimento M. Interação Célula-Proteína-Implante no Processo de Osseointegração: Interação Célula-Proteína-Implante. Braz. J. Implantol. Health Sci. 14 de março de 2022;4(2):44-59. DOI: 10.36557/2674-8169.2022v4n2p44-59

Mendes VC, Davies JE. Uma nova perspectiva sobre a biologia da osseointegração / A new perspective in the biology of osseointegration. Rev. Assoc. Paul. Cir. Dent;70(2):166-171, abr.-jun. 2016. ilus, graf.

Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28(34):5058–67

Moura JVF, Nascimento M, de Souza BM, Posch AT. O Processo de Angiogenese e Integração em Implantes Osseointegráveis de Titânio. Braz. J. Implantol. Health Sci. 25 de maio de 2022;4(3):18-32. DOI: 10.36557/2674-8169.2022v4n3p18-32

Barberi J. Spriano S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. Materials. 2021, 14, 1590.

Othman Z, Pastor BC, van Rijt S, Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials. 2018. doi: 10.1016/j.biomaterials.2018.03.020

Kastantin M, Langdon BB, Schwartz DK, A bottom-up approach to understanding protein layer formation at solid-liquid interfaces, Adv. Colloid Interface Sci. 2014; 207, 240e252, https://doi.org/10.1016/j.cis.2013.12.006.

Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces, Adv. Colloid Interface Sci. 2011;162 87e106, https:// doi.org/10.1016/j.cis.2010.12.007.

Brito TO, Nascimento M, Rocha AML, Nattrodt ARA, Marques AA, Netto MCB, Lima MPS, Souza BM, Morales LMM, Elias CN. A influência da rugosidade nos mecanismos da osseointegração de implantes: uma revisão de literatura. Odontologia: pesquisa e práticas contemporâneas - Volume 2. 2ed.: Editora Científica Digital, 2021, v. 2, p. 40-58

Ferraris S, Cazzola M, Peretti V, Stella B, Spriano S. Zeta potential measurements on solid surfaces for in Vitro biomaterials testing: Surface charge, reactivity upon contact with fluids and protein absorption. Front. Bioeng. Biotechnol. 2018; 6:1–7. doi: 10.3389/fbioe.2018.00060

Ionita D, Popescu R, Tite T, Demetrescu I. The Behaviour of Pure Titanium in Albumin Solution. Mol. Cryst. Liq. Cryst. 2008, 486, 166–174.

Imamura K, Shimomura M, Nagai S, Akamatsu M, Nakanishi K. Adsorption characteristics of various proteins to a titanium surface. J. Biosci. Bioeng. 2008; 106:273–278. doi: 10.1263/jbb.106.273.

Lefaix H, Galtayries A, Prima F, Marcus P. Nano-size protein at the surface of a Ti-Zr-Ni quasi-crystalline alloy: Fibronectin adsorption on metallic nano-composites. Colloids Surf. A Physicochem. Eng. Asp. 2013;439:207–214. doi: 10.1016/j.colsurfa.2013.04.009.

Bai Z, Filiaggi MJ, Dahn JR. Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium. Surf. Sci. 2009;603:839–846. doi: 10.1016/j.susc.2009.01.040.

Blanquer A, Musilkova J, Barrios L, Ibáñez E, Vandrovcova M, Pellicer E, Sort J, Bacakova L, Nogués C. Cytocompatibility assessment of Ti-Zr-Pd-Si-(Nb) alloys with low Young’s modulus, increased hardness, and enhanced osteoblast differentiation for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:834–842. doi: 10.1002/jbm.b.33892.

Lingli, X, Xingling S, Chun O, Wen L. In vitro Apatite Formation, Protein Adsorption and Initial Osteoblast Responses on Titanium Surface Enriched with Magnesium. Rare Met. Mater. Eng. 2017, 46, 1512–1517.

Soares P, Dias-Netipanyj MF, Elifio-Esposito S, Leszczak V, Popat K. Effects of calcium and phosphorus incorporation on the properties and bioactivity of TiO 2 nanotubes. J. Biomater. Appl. 2018, 33, 410–421.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Ana Carolina Rosa de Almeida, Nicole Serqueira da Silva, Marvin Nascimento, Bruno Martins de Souza, Aline Tany Posh

Downloads

Download data is not yet available.