Abstract
Osseointegration is the anchorage process of bone tissue to an implant, in which functional load support occurs during the exercise of its function. The positive results of implants over the years are mainly related to their properties and the possible of the biomaterials biocompatibility used, which are widely explored in dentistry. In view of the above, the present study aims to approach the interaction between cells and osseointegrated implants, highlighting the possible host responses and the factors that influence the osseointegration establishment. The methodology used was a narrative bibliographic review applied to the Scielo, MEDLINE (PubMed), and Google Scholar platforms, without language restriction, in the last 20 years. The articles that answered the question of this study were selected, and repeated articles were excluded. On the tissue level, a cascade of immunological and biological events is triggered, which will originate in the formation of blood clots and subsequent formation of new vessels (angiogenesis), and through them osteogenic cells will occur recruitment and migration to the implant surface, on which will be secreted extracellular matrix and bone formation and adhesion processes, characterizing the osseointegration process itself. In contrast, a foreign body response, called fibrointegration, can also occur. This response is characterized by the initial formation of a provisional matrix on the surface of the biomaterial, followed by a stage of acute and then chronic inflammation, formation of foreign body giant cells, and resulting in the development of a fibrotic collagenous capsule. Thus, it can be seen that understanding the difference between osseointegration and fibrointegration processes is relevant for the clinical practice of dental surgeons, since such knowledge allows the identification of the presence or absence of osseointegration, contributing to an increase in the success rate of dental implants used in dentistry.
References
Nascimento M. Interação Célula-Proteína-Implante no Processo de Osseointegração. Brazilian Journal of Implantology and Health Sciences. 2022, v. 4, Issue 2, 44-59. DOI: 10.36557/2674-8169.2022v4n2p44-59
Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert review of medical devices. 2010 v. 7, n. 2, p. 241–256.
Mendes VC, Davies JE. Uma nova perspectiva sobre a biologia da osseointegração. Revista da Associacao Paulista de Cirurgioes Dentistas. 2016; v. 70, n. 2, p. 166-171, 2016.
Bothe RT, Beaton LE, Davenport HA. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet. 1940; 71 (6) (1940), pp. 598-602.
Leventhal GS. Titanium, a metal for surgery. J Bone Joint Surg Am. 1951; 33-A, pp. 473-474
Coelho PG, Jimbo R, Tovar N, Bonfante EA. Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater. 2015 Jan;31(1):37-52. doi: 10.1016/j.dental.2014.10.007. Epub 2014 Nov 25. PMID: 25467952.
Brånemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50(3):399–410.
Nascimento M. The Oral Microbiota Influences in the Osseointegration Process. Open Access J Dent Oral Surg 2. 2021.
Rauber S. Osseodensificação em Implantes Dentários: Uma Revisão de Literatura. Brazilian Journal of Implantology and Health Sciences. 2019, v. 1, n. 4, p. 55-68.
Parithimarkalaignan S, Padmanabhan TV. Osseointegration: an update. The Journal of Indian Prosthodontic Society. 2013; v. 13, n. 1, p. 2-6.
Brito TO, Nascimento M, Rocha AML, Nattrodt ARA, Marques AA, Netto MCB, Lima MPS, Souza BM, Morales LMM, Elias CN. A influência da rugosidade nos mecanismos da osseointegração de implantes: uma revisão de literatura. Odontologia: pesquisa e práticas contemporâneas - Volume 2. 2ed.: Editora Científica Digital, 2021, v. 2, p. 40-58.
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review.Biomoléculas. 2019 nov; 9 (11): 750. doi: 10.3390/biom9110750
Leite GB, Fonseca YR, Gomes AB, Elias CN. Relação entre os parâmetros de rugosidade 3D e a molhabilidade do titânio com grãos micrométricos e sub-micrométricos. Matéria (Rio J.). 2020, v. 25,n. 2, e-12655. doi: 10.1590/s1517-707620200002.1055.
Barberi J, Spriano S. Titanium and protein adsorption: An overview of mechanisms and effects of surface features. Materials. 2021; v. 14, n. 7, p. 1590.
Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. Journal of biomedical materials research Part A, v. 105, n. 3, p. 927-940, 2017.
Grillo TA, Miranda RC. Os novos anticoagulantes orais na prática clínica. Rev Med Minas Gerais. 2014 v. 24, p. 87-95.
Katzung BG, Masters SB, Trevor AJ. Farmacologia Básica e Clínica. 12. ed. Porto Alegre: AMGH, 2014.
Silva P. Farmacologia. 8. ed., Rio de Janeiro: Guanabara Koogan, 2010
Rezende SM. Distúrbios da hemostasia: doenças hemorrágicas/Disorders of homeostasis: bleeding disorders. Rev. méd. Minas Gerais. 2010; 20(4), out.-dez.
Chaves GD. Avaliações Imunogenéticas do Desenvolvimento de Anticorpos Inibidores do Fator VIII na Hemofilia A. 2010. Disponível em: https://repositorio.ufmg.br/bitstream/1843/BUBD-8A5PSB/1/tese_daniel_chaves.pdf
Levorato, A., Bondezan, M., Fumegali, N., & Costa, M. (2019). Fatores de crescimento: um novo conceito no reparo tecidual. Revista Terra & Cultura: Cadernos De Ensino E Pesquisa, 34(esp.), 171-182. Recuperado de http://periodicos.unifil.br/index.php/Revistateste/article/view/1016
Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Current Opinion in Cell Biology. 2007;19, 495-507
Takahashi A, Takahashi S, Tsujino T, Isobe K, Watanabe T, Kitamura Y, Watanabe T, Nakata K, Kawase T. Platelet adhesion on commercially pure titanium plates in vitro I: effects of plasma components and involvement of the von Willebrand factor and fibronectin. Int J Implant Dent. 2019 Feb 25;5(1):5. doi: 10.1186/s40729-019-0160-z. PMID: 30799507; PMCID: PMC6387980.
Nguyen DT, Orgill DP & Murphy GF. Biomaterials For Treating Skin Loss. Chapter 4: The Pathophysiologic Basis for Wound Healing and Cutaneous Regeneration. 2009 25–27. Boca Raton/ Cambridge: CRC Press (US) & Woodhead Pub- lishing (UK/Europe).
Terheyden, Hendrik, et al. "Osseointegration–communication of cells." Clinical oral implants research. 2012 23.10, 1127-1135.
Stadelmann WK, Digenis AG & Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. American Journal of Surgery. 1998 176: 26S–38S.
Midwood KS, Williams LV & Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. International Journal of Bio- chemistry and Celullar Biology. 2004 36: 1031–1037.
Schultz GS & Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair and Regeneration. 2009 17: 153–162.
Biomaterials, Implants, Dentistry, Osseointegration, Fibrointegration, Angiogenesis, Foreign body response.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 João Victor França Moura, Marvin Nascimento, Bruno Martins de Souza, Aline Tany Posch