CELL-PROTEIN-IMPLANT INTERACTION IN THE OSSEOINTEGRATION PROCESS
PDF (Português (Brasil))

Keywords

osseointegration
fibrointegration
biomaterials
dental implants

How to Cite

Nascimento, M. (2022). CELL-PROTEIN-IMPLANT INTERACTION IN THE OSSEOINTEGRATION PROCESS: CELL-PROTEIN-IMPLANT INTERACTION . Brazilian Journal of Implantology and Health Sciences, 4(2), 44–59. https://doi.org/10.36557/2674-8169.2022v4n2p44-59

Abstract

Introduction: dental implants are biomaterials that have high biocompatibility and are highly promising as surgical-rehabilitating devices in dentistry. However, some these biomaterials properties such as composition, design and surface morphology need to be considered in order to achieve good osseointegration, not fibrointegration. Objective: this review seeks to elucidate the interaction mechanisms between cells and proteins with the dental implants surfaces. Materials and Methods: The research consisted of a qualitative bias in English and Portuguese in PubMed (MEDLINE), Bireme (LILACS) and Academic Google. Results: After implantation, the angiogenesis process will occur at first and then the regeneration of other tissues (bone formation and neoformation), characterizing osseointegration. However, if there is no biocompatibility, the cellular response will characterize a foreign body response (fibrointegration). Furthermore, in the nanoscale osseointegration process, a protein anchorage is formed between the periosteum and the implant, and the integrin, which is a transmembrane protein, plays a key role in this process, mediating these connections. Conclusion: It can be concluded that these interactions between cells-proteins-implants are essential for a better understanding of the cellular responses of dental implants and the role of proteins, with emphasis on integrin, which will mediate the osseointegration process.

https://doi.org/10.36557/2674-8169.2022v4n2p44-59
PDF (Português (Brasil))

References

Othman Z, Pastor BC, van Rijt S, Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials. 2018. doi: 10.1016/j.biomaterials.2018.03.020

Qian J, Wennerberg A, Albrektsson T. Reasons for Marginal Bone Loss around Oral Implants. Clinical Implant Dentistry and Related Research. 2012 14(6), 792–807. doi:10.1111/cid.12014

Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomoléculas. 2019 nov; 9 (11): 750. doi: 10.3390/biom9110750

Mendes VC, Davies JE. Uma nova perspectiva sobre a biologia da osseointegração / A new perspective in the biology of osseointegration. Rev. Assoc. Paul. Cir. Dent;70(2):166-171, abr.-jun. 2016. ilus, graf.

Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28(34):5058–67.

Andrés JG. Get a grip: integrins in cell–biomaterial interactions. 2005, 26(36), 7525–7529. doi:10.1016/j.biomaterials.2005.05.029

Kierszenbaum, Abraham L. Histologia e biologia celular: uma introdução à patologia. 4 ed. Rio De Janeiro: Elsevier Science - Contents Direct, 2016.

Gitirana LB. Coleção Conhecendo. Histologia dos tecidos. 1ª.ed. Rio de Janeiro: PUBLIT Soluções Editoriais, 2013. v. 1. 252p

Nakahama K. Cellular communications in bone homeostasis and repair. Cell Mol Life Sci. 2010 Dec;67(23):4001-9. doi: 10.1007/s00018-010-0479-3. Epub 2010 Aug 8. PMID: 20694737.

Graham JM, Ayati BP, Holstein SA, Martin JA. The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS One. 2013;8(5):e63884. Published 2013 May 22. doi:10.1371/journal.pone.0063884

Sims NA, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys. 2014 Nov 1;561:22-8. doi: 10.1016/j.abb.2014.05.015. Epub 2014 May 26. PMID: 24875146.

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biologia do tecido ósseo: estrutura, função e fatores que influenciam as células ósseas. Biomed Res Int. 2015; 2015: 421746. doi: 10.1155 / 2015/421746

Aszódi A, Bateman JF, Gustafsson E, Boot-Handford R, Fässler R. Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice? Cell Structure and Function. 2000;25(2):73–84. doi: 10.1247/csf.25.73

Helfrich MH, Stenbeck G, Nesbitt MA, et al. Integrins and adhesion molecules. In: Bilezikan JP, Raisz LG, Martin TJ, editors. Principles of Bone Biology. San Diego, Calif, USA: Academic Press, Elsevier; 2008. pp. 385–424

Zohar R. Signals between cells and matrix mediate bone regeneration. In: Tal P. H., editor. Bone Regeneration. InTech; 2012

Sroga GE, Vashishth D. Phosphorylation of Extracellular Bone Matrix Proteins and Its Contribution to Bone Fragility. J Bone Miner Res. 2018 Dec;33(12):2214-2229. doi: 10.1002/jbmr.3552. Epub 2018 Aug 7. PMID: 30001467.

Alkhaibary A, Alharbi A, Alnefaie N, Oqalaa Almubarak A, Aloraidi A, Khairy S. Cranioplasty: A Comprehensive Review of the History, Materials, Surgical Aspects, and Complications. World Neurosurg. 2020 Jul;139:445-452. doi: 10.1016/j.wneu.2020.04.211. Epub 2020 May 6. PMID: 32387405.

Guillaume B. Dental implants: A review. Morphologie. 2016 (), S1286011516000291–. doi:10.1016/j.morpho.2016.02.002

Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. 2007;23(7):844–854. doi: 10.1016/j.dental.2006.06.025.

Coelho PG, Jimbo R, Tovar N, Bonfante EA. Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dental Materials. 2015;31(1):37–52. doi: 10.1016/j.dental.2014.10.007.

Dohan Ehrenfest DM, Coelho PG, Kang B.-S., Sul Y.-T., Albrektsson T. Classificação de superfícies de implante osseointegrado: materiais, química e topografia. Tendências em Biotecnologia. 2010; 28 (4): 198–206. doi: 10.1016 / j.tibtech.2009.12.003

Elias CN, Meirelles L. Improving osseointegration of dental implants. 2010, 7(2), 241–256. doi:10.1586/erd.09.74

Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface Modifications and their Effects on Titanium Dental Implants. Biomed Res Int. 2015; 791725. doi: 10.1155 / 2015/791725

Smeets R, Stadlinger B, Schwarz F, et al. Impacto das modificações da superfície dos implantes dentários na osseointegração. Biomed Res Int. 2016: 6285620. doi: 10.1155 / 2016/6285620

Silva F, Rodrigues F, Pamato S, Pereira J. Tratamento de superfície em implantes dentários: uma revisão de literatura. Revista Da Faculdade De Odontologia – UPF. 2016; 21(1). https://doi.org/10.5335/rfo.v21i1.5256

Verborgt O, Gibson GJ, Schaffler MB. Perda de integridade de osteócitos em associação com microdano e remodelação óssea após fadiga in vivo. Journal of Bone and Mineral Research . 2000; 15 (1): 60–67. doi: 10.1359 / jbmr.2000.15.1.60.

Marin C, Granato R, Suzuki M, Gil JN, Janal MN, Coelho PG. Avaliação histomorfológica e histomorfométrica de várias configurações de câmaras de cicatrização de implantes endósseos em tempos iniciais de implantação: um estudo em cães. Pesquisa Clínica de Implantes Orais. 2010; 21 (6): 577–583. doi: 10.1111 / j.1600-0501.2009.01853.x.

Brånemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50(3):399–410.

Mendes VC, Davies JE. Uma nova perspectiva sobre a biologia da osseointegração / A new perspective in the biology of osseointegration. Rev. Assoc. Paul. Cir. Dent;70(2):166-171, abr.-jun. 2016. ilus, graf.

Letić-Gavrilović A, Scandurra R, Abe K. Genetic potential of interfacial guided osteogenesis in implant devices. Dent Mater J. 2000 Jun;19(2):99-132. doi: 10.4012/dmj.19.99. PMID: 11219100.

Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11(5):391–401.

Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–49.

Insua A, Monje A, Wang H-L, Miron RJ. 2017. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res Part A 2017:105A:2075–2089.

Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, Ratner BD, Jiang S. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol. 2013;31:553–556

Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res Part A. 2017:105A:927–940

Kumar V, Abbas AK, Fausto NF. Acute and chronic inflammation. In: Kumar V, Abbas AK, Fausto NF, editors. Pathologic Basis of Disease. Philadelphia: Saunders; 2004.

Kastantin M, Langdon BB, Schwartz DK, A bottom-up approach to understanding protein layer formation at solid-liquid interfaces, Adv. Colloid Interface Sci. 2014; 207, 240e252, https://doi.org/10.1016/j.cis.2013.12.006.

Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces, Adv. Colloid Interface Sci. 2011;162 87e106, https:// doi.org/10.1016/j.cis.2010.12.007.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Marvin Nascimento