Persea major: Content of Total Phenolic Compounds and Masterful Development of Gel for Application in Endodontics.
PDF (Português (Brasil))

Keywords

Phenolic compounds
Natural producT
Natural product
Extraction
Antibacterial activity
endodontics

How to Cite

Ferreira , D. F., Herrerias , T., Ludwig, D. B., Martins, M. V. S., Martins, H. R. F., Chao, B. M. P., & de Camargo, L. E. A. de. (2024). Persea major: Content of Total Phenolic Compounds and Masterful Development of Gel for Application in Endodontics. Brazilian Journal of Implantology and Health Sciences, 6(2), 1660–1670. https://doi.org/10.36557/2674-8169.2024v6n2p1660-1670

Abstract

Persea major (Pau de Andrade), is a plant native to southern Brazil known for its medicinal properties, focusing on the bark as a
raw material. The growing interest in herbal medicine research stands out, moving sustainable resources towards the development
of medicines. Persea major has traditionally been used due to its gastroprotective, antibacterial and antiseptic healing properties,
although there is a paucity of publications on its use. Phytochemical studies revealed the presence of bioactive compounds,
such as benzyl tetrahydroisoquinoline alkaloids, flavonoids and tannins, with pharmacological potential, including cytotoxic action
against cancer cells. However, its potential in Endodontics remains little explored. In the present study, phenolic compounds were
extracted from three different solvents, water, ethanol:water (70:30 v/v) and ethanol:water:acetic acid (70:25:5) and then the total
concentration of phenolics was quantified by Folin-Ciocalteau method. The most significant result of total phenolic compounds
was observed in the acidified hydroethanolic extract sample (439.9 ± 1.22mg/mL), followed by the hydroethanolic extract sample
(153.2 ± 1.38mg/mL) and the extract sample aqueous (98.8 ± 1.52mg/mL). Subsequently, a pilot formulation of gel containing
Persea major was developed for endodontic use, lesions to bacterial elimination in root canals, with emphasis on the eradication of
Enterococcus faecalis, a bacterium known for its resistance to conventional treatments.
https://doi.org/10.36557/2674-8169.2024v6n2p1660-1670
PDF (Português (Brasil))

References

AMAROWICZ, R. Tannins: the new natural antioxidants? European Journal of Lipid Science and Technology. v. 109, n. 6, p. 549 - 551, 2007.https://doi.org/10.1002/ejlt.200700145 6. Disponível em: https://www.researchgate.net/publication/230514636_Tannins_The_new_natural_antioxidants

BHANDARI, S.; ASHWINI, T. S.; PATIL, C. R.; An in vitro evaluation of antimicrobial efficacy of 2% chlorhexidine gel, propolis and calcium hydroxide against Enterococcus faecalis in human root dentin. Journal Clinical and Diagnostic Research. v. 8, p. 60, 2014. Dispoonível em: https://pubmed.ncbi.nlm.nih.gov/25584319/

BODOIRA, R.; MAESTRI, D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. J Agric Food Chem. v. 68, n. 4, p. 927-942, 2020. doi: 10.1021/acs.jafc.9b07160. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31910006/

CAMARGO, L. E. A.; PEDROSO, L. S.; VENDRAME, S. C.; MAINARDES, R. M.; KHALIL, N. M. Antioxidant and antifungal activities of Camellia sinensis (L.) Kuntze leaves obtained by different forms of production. Braz. J. Biol. v. 76, n. 2, p. 428-434, 2016. https://doi.org/10.1590/1519-6984.18814. Isponível em: https://pubmed.ncbi.nlm.nih.gov/26983085/

CHOPRA, B.; DHINGRA, A.K. Natural products: A lead for drug discovery and development. Phytother Res. v. 35, n. 9, p. 4660-4702, 2021 doi: 10.1002/ptr.7099. https://pubmed.ncbi.nlm.nih.gov/33847440/

COSMO, S.A.; MAYER, B.; FREITAS, C.S.; BAGGIO, C.H.; MARQUES, M.C.A.M. Gastroprotective effect of hydroalcoholic extract from barks of Persea major Kopp (Lauraceae) in rats. Brazilian Journal of Pharmacognosy. v. 17, n. 4, p. 533-537, 2007. https://www.scielo.br/j/rbfar/a/PfMWWFBqCKSshNCKYp35dFv/?lang=en

GARCIA-SALAS, P.; MORALES-SOTO, A.; SEGURA-CARRETERO, A.; FERNANDEZ-GUTIERREZ, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules. v. 15, n. 12, p. 8813–8826, 2010. https://doi.org/10.3390/molecules15128813. Disponível em: https://pubmed.ncbi.nlm.nih.gov/21131901/

GIL-MARTÍN, E.; FORBES-HERNÁNDEZ, T.; ROMERO, A.; CIANCIOSI, D.; GIAMPIERI, F.; BATTINO, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. v. 1, n. 378, 2022 doi: 10.1016/j.foodchem.2021.131918. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35085901/

HARVEY, A.L.; EDRADA-EBEL, R.; QUINN, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. v. 14, n. 2, p. 111-129, 2015. doi: 10.1038/nrd4510. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25614221/

JEON, J.G.; ROSALEN, P.L.; FALSETTA, M.L.; KOO, H. Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res. v. 45, n. 3, p. 243-263, 2011. doi: 10.1159/000327250. Disponívelem: https://pubmed.ncbi.nlm.nih.gov/21576957/

MARANHO, L.T.; PREUSSLER, K.H.; ROCHA, L.D. Organização estrutural da casca de Persea major Kopp (Lauraceae). Acta bot. bras. v. 23, n. 2, p.509-515, 2009. Disponível em: https://www.scielo.br/j/abb/a/rvqTK89jGfL7D9wg4Hh7btj/?lang=pt

MOHAMMADI, Z.; SHALAVI, S.; YAZDIZADEH, M. Antimicrobial activity of calcium hydroxide in endodontics: a review. Chonnam Medical Journal. v. 48, p. 133-140, 2012. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23323217/

MOHAMMED M. A.; SAEED, Y.S.; ALI, J.F. Antibacterial activity of phenolic compounds of Teucrium polium L. Pak J Pharm Sci. v. 36, n. 5, p. 1435-1442, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37869919/

MONTEIRO, J.M.; ALBUQUERQUE, U.P.; ARAÚJO, E.L. Taninos: uma abordagem da química à ecologia. Quim Nova. v. 28, p892–896, 2005. Disponível em: https://www.scielo.br/j/qn/a/YJDjDfvLBpkkbFXML3GPjdt/?lang=pt

ORLANDO, F. B.; SILVA, A. F. G.; PARREIRA, M. W. F. Screening fitoquímico de espécimes de Lauraceae que ocorrem na região sul do estado de mato grosso do sul. Anais da 58ª. Reunião Anual da SBPC - Florianópolis, SC - Julho/2006. Disponível em: https://www.sbpcnet.org.br/eventos/58ra/pags/p%F4steres_final.pdf

RAJENDIRAN, M.; TRIVEDI, H.M.; CHEN, D.; GAJENDRAREDDY, P.; CHEN, L. Recent Development of Active Ingredients in Mouthwashes and Toothpastes for Periodontal Diseases. Molecules. v. 26, n. 7, 2021. doi: 10.3390/molecules26072001. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037529/

REDHA A.A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. J Agric Food Chem. v. 69, n. 3, p. 878-912, 2021. doi: 10.1021/acs.jafc.0c06641.Disponível em : https://pubmed.ncbi.nlm.nih.gov/33448847/

REYNOSO-CAMACHO, R., RODRÍGUEZ-VILLANUEVA, L. D., SOTELO-GONZALEZ, ´ A. M., RAMOSGOMEZ, ´ M., P´EREZ-RAMÍREZ, I. F. Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and non-extractable polyphenols. Food Chem. v. 350, 2021. https://doi.org/10.1016/j.foodchem.2021.129239. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33592362/.

SALAZAR-SÁNCHEZ, N.; LÓPEZ-JORNET, P.; CAMACHO-ALONSO, F.; SÁNCHEZ-SILES, M. Efficacy of topical Aloe vera in patients with oral lichen planus: a randomized double-blind study. J Oral Pathol Med. v. 39, n. 10, p. 735-740, 2010. doi: 10.1111/j.1600-0714.2010.00947.x. Disponível em: https://pubmed.ncbi.nlm.nih.gov/20923446/

SOARES, A.D.S.; WANZELER, A.M.V.; CAVALCANTE, G.H.S.; BARROS, E.M.D.S.; CARNEIRO, R.C.M.; TUJI, F.M. Therapeutic effects of andiroba (Carapa guianensis Aubl) oil, compared to low power laser, on oral mucositis in children underwent chemotherapy: A clinical study. J Ethnopharmacol. v. 10, n. 264, 2021 doi: 10.1016/j.jep.2020.113365. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32920135/

SOMENSI, L.B.; BOEING, T.; CURY, B. J.; STEIMBACH, V. M. B.; NIERO, R.; SOUZA, L. M.; SILVA, L. M.; ANDRADE, S. F. Hydroalcoholic extract from bark of Persea major (Meisn.) L.E. Kopp (Lauraceae) exerts antiulcer effects in rodents by the strengthening of the gastric protective factors. Journal of Ethnopharmacology. v. 209, p. 294–304, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28807848/

TSAI, I.L.; HSIEH, C.F.; DUH, C.Y. Additional cytotoxic neolignans from Persea obovatifolia. Phytochemistry. v. 48, n. 8, p. 1371-1375, 1998 doi: 10.1016/s0031-9422(97)00948-5. PMID: 9720316. Disponível em: https://pubmed.ncbi.nlm.nih.gov/9720316/

VAZQUEZ-ARMENTA, F.J.; LEYVA, J.M.; MATA-HARO, V.; GONZALEZ-AGUILAR, G.A.; CRUZ-VALENZUELA, M.R.; ESQUEDA, M.; GUTIERREZ, A.; NAZZARO, F.; FRATIANNI, F.; GAITÁN-HERNÁNDEZ, R.; AYALA-ZAVALA, J.F. Phenolic compounds of Phellinus spp. with antibacterial and antiviral activities. Braz J Microbiol. v. 53, n. 3, p. 1187-1197, 2022. doi: 10.1007/s42770-022-00745-x. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433629/

VOLPATO, L.; GABARDO, M. C. L.; LEONARDI, D. P.; TOMAZINHO, P. H.; MARANHO, L. T.; BARATTO-FILHO, F. Effectiveness of Persea major Kopp (Lauraceae) extract against Enterococcus faecalis: a preliminary in vitro study. BMC Res Notes. v. 10, p. 119-124, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28264708/

VIEIRA, D.R.; AMARAL, F.M.; MACIEL, M.C.; NASCIMENTO, F.R.; LIBÉRIO, S.A.; RODRIGUES, V.P. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation. J Ethnopharmacol. v. 155, n. 3, p. 1441-1449, 2014. doi: 10.1016/j.jep.2014.07.021. Disponível em: https://www.researchgate.net/publication/264127316_Plant_species_used_in_dental_diseases_Ethnopharmacology_aspects_and_antimicrobial_activity_evaluation

ZENI, L.C.; LARA, P.; SOUSA, E.L.; MICHELOTTO JR, P.V.; CABRAL, L.D. Utilização do Persea major (pau-de-andrade) em ferida de equino. Rev. Acad. Ciênc. Anim. v.15, s.1, p. 417-418, 2017. doi:10.7213/academica.15.S01.2017.208. Disponível em: file:///Users/lual/Downloads/16295-26828-1-SM.pdf

ŻUREK, N.; PAWŁOWSKA, A.; PYCIA, K.; GRABEK-LEJKO, D.; KAPUSTA, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules. v. 27, n. 9, 2022 doi: 10.3390/molecules27092762. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35566113/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Daiane Finger Ferreira , Tatiana Herrerias , Daniel Brustolin Ludwig, Marcos Vinicius Soares Martins, Hilana Rickli Fiuza Martins, Bárbara Mendes Paz Chao, Luciana Erzinger Alves de de Camargo