Os efeitos do bloqueio de uma haste universal não cimentada do quadril na subsidência do implante e nas propriedades mecânicas da fêmora canina cadavérica.
PDF
DOI: 10.36557/2674-8169.2019v1n2p34-57

Palavras-chave

Osseointegração
Implante
Estudo biomecânico
Fêmora canina

Como Citar

Ferreira Lemos, A. C., & Corrêa Silva, A. F. . (2019). Os efeitos do bloqueio de uma haste universal não cimentada do quadril na subsidência do implante e nas propriedades mecânicas da fêmora canina cadavérica. Brazilian Journal of Implantology and Health Sciences, 1(2), 34–57. Recuperado de https://bjihs.emnuvens.com.br/bjihs/article/view/46

Resumo

Objective: Determinar se um parafuso de bloqueio limitaria a subsidência da haste femoral do quadril universal de fixação biológica (BFX ®) sob carga cíclica e aumentaria as propriedades de rigidez, rendimento e falha da construção.

Material and method: Os fêmures emparelhados implantados com uma haste tradicional ou uma haste de bloqueio (construções) foram carregados ciclicamente em cargas de caminhada, trote e galope, enquanto os movimentos do implante e do osso foram capturados usando marcadores cinemáticos e vídeo em alta velocidade. As construções foram carregadas até a falha para avaliar as propriedades mecânicas da falha.

Results:  A subsidência do implante foi maior ( P  = 0,037) para o implante tradicional (4,19 mm) do que o implante intertravado (0,78 mm) somente após carregamento cíclico de galope e cumulativamente após cargas cíclicas de caminhada, trote e galope (5,20 mm vs. 1,28 mm , P  = 0,038). As cargas de rendimento e falha foram maiores ( P  = 0,029 e 0,002, respectivamente) para o construto de haste intertravada (1155 N e 2337 N) do que o construto de haste tradicional (816 N e 1405 N). A alteração do ângulo de versão após a carga cíclica foi maior ( P  = 0,020) no implante tradicional (3,89 graus) do que no implante intertravado (0,16 graus), enquanto o deslocamento em varo da haste na falha foi maior ( P = 0,008) para o implante de bloqueio (1,5 graus) do que o implante tradicional (0,17 graus).

Conclusion:  A adição de um parafuso estabilizador melhorou a estabilidade da construção e subsidência limitada de uma haste femoral BFX ® . O uso do implante intertravado pode diminuir a subsidência pós-operatória. No entanto, os efeitos in vivo do parafuso de bloqueio na osseointegração, remodelação óssea e proteção contra o estresse são desconhecidos.

PDF
DOI: 10.36557/2674-8169.2019v1n2p34-57

Referências

1. DeYoung DJ, DeYoung BA, Aberman HA, et al: Implantation of an uncemented total hip prostheses, technique and initial results of 100 arthroplasties. Vet Surg 1992; 21: 168– 177
2. Barden TD, Olivier NB, Blaiset MA, et al: Objective evaluation of total hip replacement in 127 dogs utilizing force plate analysis. Vet Comp Orthop Traumatol 2004; 17: 78– 81
3. Lascelles BD, Freire M, Roe SC, et al: Evaluation of functional outcome after BFX® total hip replacement using a pressure sensitive walkway. Vet Surg 2010; 39: 71– 77
4. Olmstead ML: Total hip replacement. Vet Clin North Am Small Anim Pract 1987; 17: 943– 955
5. Edwards MR, Egger EL, Schwarz PD: Aseptic loosening of the femoral implant after cemented total hip arthroplasty in dogs: 11 cases in 10 dogs (1991–1995). J Am Vet Med Assoc 1997; 211: 580– 586
6. Ota J, Cook JL, Lewis DD, et al: Short‐term aseptic loosening of the femoral component in canine total hip replacement: effects of cementing technique on cement mantle grade. Vet Surg 2005; 34: 345– 352
7. Skurla CP, Pluhar GE, Frankel DJ, et al: Assessing the dog as a model for human total hip replacement. Analysis of 38 canine cemented femoral components retrieved at post‐mortem. J Bone Joint Surg Br 2005; 87: 120– 127
8. Bergh MS, Gilley RS, Shofer FS, et al: Complications and radiographic findings following cemented total hip replacement. Vet Comp Orthop Traumatol 2006; 19: 172– 179
9. Marcellin‐Little DJ, DeYoung BA, Doyens DH, et al: Canine uncemented porous‐coated anatomic total hip arthroplasty: results of a long term prospective evaluation of 50 consecutive cases. Vet Surg 1999; 28: 10– 20
10. Hummel DW, Lanz OI, Werre SR: Complications of cementless total hip replacement. Vet Comp Orthop Traumatol 2010; 23: 424– 432
11. Schneider E, Kinast C, Eulenberger J, et al: A comparative study of the initial stability of cementless hip prostheses. Clin Orthop Relat Res 1989; 248: 200– 209
12. Schimmel JW, Huiskes R: Primary fit of the Lord cementless total hip: a geometric study in cadavers. Acta Orthop Scand 1988; 59: 638– 642
13. McKoy BE, An YH, Friedman RJ: Factors affecting the strength of the bone‐implant interface, in YH An, RA Draughn (eds): Mechanical testing of bone and the bone‐implant interface. Boca Raton, FL, CRC Press, 2000, pp 439– 462
14. Schneider E, Eulenberger J, Steiner W, et al: Experimental method for the in vitro testing of the initial stability of cementless hip prostheses. J Biomech 1989; 22: 735– 744
15. Jasty M, Bragdon C, Burke D, et al: In vivo skeletal responses to porous‐surfaced implants subjected to small induced motions. J Bone Joint Surg Am 1997; 79: 707– 714
16. Aspenberg P, Goodman S, Toksvig‐Larsen S, et al: Intermittent micromotion inhibits bone ingrowth. Acta Orthop Scand 1992; 63: 141– 145
17. Overgaard S, Lind M, Glerup H, et al: Porous‐coated versus grit‐blasted surface texture of hydroxyapatite‐coated implants during controlled micromotion. J Arthrop 1998; 13: 449– 458
18. Ganz SM, Jackson J, VanEnkevort B: Risk factors for femoral fracture after canine press‐fit cementless total hip arthroplasty. Vet Surg 2010; 39: 688– 695
19. Townsend KL, Kowaleski MP, Rajala‐Shultz P, et al: Radiographic analysis of Biomedtrix cementless femoral stem implants as a predictor for subsidence. Vet Surg 2007; 36: E26
20. Rashmir‐Raven AM, DeYoung DJ, Abrams CF, et al: Subsidence of an uncemented canine femoral stem. Vet Surg 1992; 21: 327– 331
21. Pernell RT, Gross RS, Milton JL, et al: Femoral strain distribution and subsidence after physiological loading of a cementless canine femoral prosthesis: the effects of implant orientation, canal fill, and implant fit. Vet Surg 1994; 23: 503– 518
22. DeYoung DJ, Schiller RA, DeYoung BA: Radiographic assessment of a canine uncemented porous‐coated anatomic total hip prosthesis. Vet Surg 1993; 22: 473– 481
23. Bartel DL, Dueland RT, Quentin JA: Biomechanical considerations in the design of a canine total hip prosthesis. J Am Anim Hosp Assoc 1975; 11: 553– 559
24. BioMedtrix internal clinical follow‐up report: cementless THR, April 2014
25. BioMedtrix universal canine hip system. Surgical technique for BFX® cementless and CFX® cemented implants, BioMedtrix, Boonton, New Jersey. Released August 28, 2007
26. Bausman JA, Wendelburg KL: Femoral prosthesis version angle calculation from a saggital plane radiographic projection of the femur. Vet Surg 2013; 42: 398– 405
27. Budsberg SC, Verstraete MC, Soutas‐Little RW: Force plate analysis of the walking gait in healthy dogs. Am J Vet Res 1987; 48: 915– 918
28. Bockstahler BA, Skalicky M, Peham C, et al: Reliability of ground reaction forces measured on a treadmill system in healthy dogs. Vet J 2007; 173: 373– 378
29. Bertram JE, Lee DV, Case HN, et al: Comparison of the trotting gaits of Labrador Retrievers and Greyhounds. Am J Vet Res 2000; 61: 832– 838
30. Budsberg SC, Verstraete MC, Brown J, et al: Vertical loading rates in clinically normal dogs at a trot. Am J Vet Res 1995; 56: 1275– 1280
31. Walter RM, Carrier DR: Ground forces applied by galloping dogs. J Exp Biol 2007; 210: 208– 216
32. Aper RL, Litsky AS, Roe SC, et al: Effect of bone diameter and eccentric loading on fatigue life of cortical screws used with interlocking nails. Am J Vet Res 2003; 64: 569– 573
33. Hottinger HA, DeCamp CE, Olivier NB, et al: Noninvasive kinematic analysis of the walk in healthy large breed dogs. Am J Vet Res 1996; 57: 381– 388
34. Dosch M, Hayashi K, Garcia TC, et al: Biomechanical evaluation of the Helica femoral implant system using traditional and modified techniques. Vet Surg 2013; 42: 867– 876
35. McCulloch RS, Roe SC, Marcellin‐Little DJ, et al: Resistance to subsidence of an uncemented femoral stem after cerclage wiring of a fissure. Vet Surg 2012; 41: 163– 167
36. Pozzi A, Peck JN, Chao P, et al: Mechanical evaluation of adjunctive /fixation for prevention of periprosthetic femur fracture with the Zurich cementless total hip prosthesis. Vet Surg 2013; 42: 529– 534
37. Burns CG, Litsky AS, Allen MJ, et al: Influence of locking bolt location on the mechanical properties of an interlocking nail in the canine femur. Vet Surg 2011; 40: 522– 530
38 Carrera L, Haddad S, Minguell J, et al: Mid‐term outcomes and complications with cementless distal locking hip revision stem with hydroxyapatite coating for proximal bone defects and fractures. J Arthrop 2015; 30: 1035– 1040
39. Pfau T, Garland de Rivaz A, Brighton S, et al: Kinetics of jump landing in agility dogs. Vet J 2011; 190: 278– 283
40. Townsend KL, Kowaleski MP, Johnson KA: Initial stability and femoral strain pattern during axial loading of canine cementless femoral prostheses: effect of resection level and implant size. Proceedings of the Veterinary Orthopedic Society, Sun Valley, ID, March 2007


Os autores declaram não haver conflitos de interesse.
The authors declare no conflicts of interest.

Os autores são detentores dos direitos autorais mediante uma licença CCBY 4.0.