Endothelial dysfunction and thrombotic complications associated with SARS-CoV-2 in adults: a systematic review
PDF

Palavras-chave

SARS-CoV-2; adult; endothelial dysfunction; thrombotic complications

Como Citar

Pamplona, M. A., Taveira, J. H., da Mata, K. M., Moraes, K. S., França, M. C. M., Ribeiro, A. B. de A., da Mata, R. A., & Fernandes, C. R. (2023). Endothelial dysfunction and thrombotic complications associated with SARS-CoV-2 in adults: a systematic review. Brazilian Journal of Implantology and Health Sciences, 5(4), 246–260. https://doi.org/10.36557/2674-8169.2023v5n4p246-260

Resumo

Introduction: During the pandemic, occurrences of thromboembolic complications and endothelial dysfunctions associated with COVID-19 were observed. Thus, the pathophysiology of the mechanisms of action are not fully elucidated. Methods: Aiming at a better understanding of the associated mechanisms of endothelial function due to COVID-19, a systematic review was developeded out using index databases and a selection process in which the inclusion criteria were articles that addressed the mechanism of thrombotic events by endothelium dysfunction and publications that associate COVID-19 with thrombotic complications in adults up to 59 years of age. Conclusion: SARS CoV 2 is associated with altered endothelial function by endothelial mechanisms induced by direct viral infection and injury, leading to changes in the angiotensin II/AT1 axis and inflammatory response.

https://doi.org/10.36557/2674-8169.2023v5n4p246-260
PDF

Referências

Agrati et al. (2021). Elevated P-selectin in severe Covid-19: Considerations for therapeutic options. Mediterranean Journal of Hematology and Infectious Diseases. http://dx.doi.org/10.4084/MJHID.2021.016

Almyroudi M., & Dimopoulos G. (2020). Incidence, pathogenesis and management of thromboembolic complications in severe COVID-19. Pneumon. https://www.embase.com/search/results?subaction=viewrecord&id=L2006128138&from=export

Amoah, Gunasekaran, Rahi e Buscher. (2020). A case of secondary tension pneumothorax in COVID-19 pneumonia in a patient with no prior history of lung disease. SAGE Journals Open Medical Case Reports. http://dx.doi.org/10.1177/2050313X20967504

Canzano et al. (2020). Disantangling the mechanisms behind the thrombotic complications of COVID-19 Patients: insights into platelet and endotelial activation. Research and Practice in Thrombosis and Haemostasis. http://dx.doi.org/10.1002/rth2.12413

Carmeliet P. (2021). Single vascular cell heterogeneity in health and disease: A COVID-19 update. Topics in Antiviral Medicine. https://www.embase.com/search/results?subaction=viewrecord&id=L635068396&from=export

Chen W., & Pan J. (2021). Anatomical and Pathological Observation and Analysis of SARS and COVID-19: Microthrombosis is the Main Cause of Death. BMC Biological Procedures Online. http://dx.doi.org/10.1186/s12575-021-00142-y

Della Rocca et al. (2021). Evidence of systemic endotelial injury and microthrombosis in hospitalized COVID-19 patients at different stages of the disease. Journal of Thrombosis and Thrombolysis. https://doi.org/10.1007/s11239-020-02330-1

Fei, Tang, Liu e Cao (2020). Coagulation Dysfunction: A Hallmark in COVID-19. Archives of Pathology & Laboratory Medicine. https://doi.org/10.5858/arpa.2020-0324-SA

Freda et al. (2021). SARS-CoV-2 Structural Proteins Exposure Alter Thrombotic and Inflammatory Responses in Human Endothelial Cells. Cellular and Molecular Bioengineering. http://dx.doi.org/10.1007/s12195-021-00696-7

Gencer et al. (2020). Immunoinflammatory, Thrombohaemostatic and Cardiovascular Mechanisms in COVID-19. Thrombosis and Haemostasis. http://dx.doi.org/10.1055/s-0040-1718735

Giannis et al. (2020). Thromboembolic outcomes of hospitalized COVID-19 patients in the 90-day- post-discharge period: early data from the northwell core-19 registry. Blood. https://doi.org/10.1182/blood-2020-141901

Ma, Yang, Huang e Lui (2020). Endothelial contribution to COVID-19 : an update on mechanisms and therapeutic implications. Journal of Molecular and Cellular Cardiology. 164. https://www.jmcc-online.com/article/S0022-2828(21)00225-X/fulltext#secst0055

Nagashima et al. (2020). Endothelial dysfunction and thrombosis in patients with COVID-19 – Brief report. Arteriosclerosis, Thrombosis and Vascular Biology. http://dx.doi.org/10.1161/ATVBAHA.120.314860

Pamplona M. (2022). Figure 1. PRISMA study selection and inclusion process flowchart.

Pamplona M. (2022). Figure 2. Activation of the inflammatory and thrombotic mechanism by SARS-CoV-2.

Pamplona M. (2022). Figure 3. Parameters in critically ill patients with Covid-19.

Pamplona M. (2022). Table 1: Search Strategy.

Pamplona M. (2022). Table 2: Bibliographic search results table.

Pamplona M. (2022). Table 3. Thrombotic Complications.

Róman et al. (2020). The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implemente international neurological registries. Journal of the neurological sciences. 414. https://doi.org/10.1016/j.jns.2020.116884

Shmaier et al. (2021). Tie2 activation protects Against prothrombotic endotelial dysfunction in COVID-19. JCI Insight. http://dx.doi.org/10.1172/jci.insight.151527

WHO - World Health Organization (2020).

Zhang et al. (2020). SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. Journal of Hematology & Oncology. https://jhoonline.biomedcentral.com/articles/10.1186/s13045-020-00954-7

Pamplona, Mariane Arakawa, et al. "Endothelial dysfunction and thrombotic complications associated with SARS-CoV-2 in adults: a systematic review." Research, Society and Development 12.4 (2023): e3312440859-e3312440859. https://creativecommons.org/licenses/by/4.0/deed.pt_BR

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Mariane Arakawa Pamplona, José Hittalo Taveira, Karina Magalhães da Mata, Kleber Silva Moraes, Maria Clara Mendonça França, Anna Beatriz de Assis Ribeiro, Renata Alves da Mata, Cleverson Rodrigues Fernandes