Resumo
.
Objective:
This work evaluated cell proliferation, cell cycle, and lipoperoxidation of populations of neutrophils and lymphocytes, in contact with titanium discs, in an inflamed environment, irradiated with LLL (low-level laser).
Background:
Dental implants, and titanium screws, used in dental and maxillofacial surgery, can osseointegrate, and support loads, The osseointegrated implant surgery causes trauma and initiates an inflammatory process.
Laser photobiomodulation can affect living tissues, accelerating the inflammatory phase and the repair process.
Method:
lymphocytes and neutrophils were cultured with TNF- (tumor necrosis factor-alpha) to simulate an inflamed environment. They were cultured with titanium discs to simulate osseointegrated implants. To evaluate the laser photobiomodulation effects, neutrophils received 1 irradiation of LLL, and lymphocytes received 3 irradiations of LLL, (every 24 hs) of 50mW, 660 nm AsGaAl (aluminum gallium arsenate) red laser, for 50 sec., 2.5 J and 88.33 J/cm² per session.
The cell cycle was analyzed in flow cytometry, and the lipid peroxidation was quantified. Results were statistically evaluated using unpaired one-way ANOVA and Tukey-Kramer analysis (*) p<0.05 at graphpad Prism 8TM.
Results:
All the treatments increase the levels of ROS inside the neutrophils and lymphocytes.
All the groups present changes in the cell cycle increasing DNA synthesis and mitosis, except for the neutrophils that when laser irradiated are not distinct from the control group, and for the lymphocytes that when cultured with TNF- itself increase apoptosis.
Conclusion:
Laser photobiomodulation after implant placement increases lymphocyte and neutrophil DNA synthesis and mitosis, and this increase was higher in an inflamed environment.
Referências
R. Smeets, B.Stadlinger, F. Schwarz, B Beck-Broichsitte, O.Jung, C.Precht, F. Kloss, A. Gröbe, M. Heiland, T.Ebker, Impact of Dental Implant Surface Modifications on Osseointegration, Biomed Res Int. 20166285620 (2016) doi: 10.1155/2016/6285620. Epub 2016 Jul 11. PMID: 27468833; PMCID: PMC4958483.
K.M.Hotchkiss, K.T.Sowers, R. Olivares-Navarrete, Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater. 2019,35(1):176-184. doi: 10.1016/j.dental.2018.11.011. Epub (2018) Nov 30. PMID: 30509481.
P.I.Brånemark, R.Adell, T.Albrektsson, U.Lekholm, S.Lundkvist, B.Rockler, Osseointegrated titanium fixtures in the treatment of edentulousness, Biomaterials. 1983. 4(1):25-8. doi: 10.1016/0142-9612(83)90065-0. PMID: 6838955.
T.M.Hale, B.B.Boretsky, M.J.Scheidt, Evaluation of titanium dental implant osseointegration in posterior edentulous areas of micro swine. J Oral Implantol (1991), 17(2):118-24. PMID: 1811062.
M.A.Saghiri, A.Asatourian, F. Garcia-Godoy, N.Sheibani, The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics, and treatments, Med Oral Patol Oral Cir Bucal (2016) 1,21(4):514-525. doi: 10.4317/medoral.21199. PMID: 27031073; PMCID: PMC4920467.
D.F. àWengen, Titanium Implants in the Nose: State of the Art. Facial Plast Surg. 2022. 38(5):461-467. doi: 10.1055/a-1786-8498. Epub (2022) Mar 3. PMID: 35240712.
X. Zhu, H. Huang, L. Zhao, PAMPs and DAMPs as the Bridge Between Periodontitis and Atherosclerosis: The Potential Therapeutic Targets. Front Cell Dev Biol (2022), 25,10:856118. doi: 10.3389/fcell.2022.856118. PMID: 35281098; PMCID: PMC8915442.
F.V.S.Castanheira, P. Kubes, Neutrophils, and NETs in modulating acute and chronic inflammation. Blood, (2019), 16;133(20):2178-2185. doi: 10.1182/blood-2018-11-844530. Epub 2019 Mar 21. PMID: 30898862.
M.Peiseler, P Kubes, More friend than foe: the emerging role of neutrophils in tissue repair. J Clin Invest, (2019), 17,129(7):2629-2639. doi: 10.1172/JCI124616. PMID: 31205028; PMCID: PMC6597202.
J.M.Cordeiro, M.G.Sahad, M.F.X.B.Cavalcanti, R.L.Marcos, F.Diomede,O.Trubiani, D.A.Maria, C.P.L.J. Ernesto, L.Frigo, Laser Photobiomodulation Over Teeth Subjected to Orthodontic Movement, Photomed Laser Surg. (2018), 36(12):647-652. doi: 10.1089/pho.2018.4532. PMID: 31697636.
A.C. Ruh, L.Frigo, M.F.X.B.Cavalcanti, S.Paulo, V.N. Viviane, B.A. Rodrigo, Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers Med Sci. (2018) 33(1):165-171. doi: 10.1007/s10103-017-2384-6. Epub 2017 Nov 28. PMID: 29181642.
Cavalcanti MFXB, Cabette RA, Moraes AC, Diomede F, Trubiani O, Maria DA. The Effects In Vitro of Photobiomodulation Over Fibroblasts and Extracellular Matrix. Photobiomodul Photomed Laser Surg. 2024 Feb;42(2):140-147. doi: 10.1089/photob.2023.0123. PMID: 38393824.
S.T.F.C. Munhoz, G.L.C.V. Sirqueira, L.F.C.Macêdo, Effect of low-power infrared laser in post-implant osseointegration: literature review. Revista Eletrônica Acervo Saúde / Electronic Journal Collection Health. REAS. (2019), 28 /1036, 1-7. DOI: https://doi.org/10.25248/reas.e1036. ISSN 2178-2091.
J.A.A.C. Piva, E.M.C.Abreu, V.S.S. Silva, Ação da terapia com laser de baixa potência nas fases iniciais do reparo tecidual: princípios básicos. (2016), An. Bras. Dermatol. 86(5).https://doi.org/10.1590/S0365-05962011000500013.
D. Gius, A. Botero, S.Shah, Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett. (1999), 1,106(2-3):93-106. doi: 10.1016/s0378-4274(99)00024-7. PMID: 10403653.
H. Nakamura, K. Nakamura, J. Yodoi, Redox regulation of cellular activation. Annu Rev Immunol (1997), 15:351-69. doi: 10.1146/annurev.immunol.15.1.351. PMID: 9143692.
S. Farivar, T.Malekshahabi, R.Shiari, Biological effects of low-level laser therapy. J Lasers Med Sci (2014), 5(2):58-62. PMID: 25653800; PMCID: PMC4291815.
M. Kreisler, A.B.Christoffers, B. Willershausen, B. d’Hoedt, Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol. (2003), 30(4):353-8. doi: 10.1034/j.1600-051x.2003.00001.x. PMID: 12694435.
F. Aimbire, R.A. Lopes-Martins, R. Albertini, M.T.T. Pacheco, H.C. Castro-Faria-Neto, P.S.L.L.Martins,J.M. Bjordal, Effect of low-level laser therapy on hemorrhagic lesions induced by immune complex in rat lungs. Photomed Laser Surg. (2007), 25(2):112-7. doi: 10.1089/pho.2006.1041. PMID: 17508847.
P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, M.R. Hamblin, Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. (2013). 32(1):41-52. PMID: 24049929; PMCID: PMC4126803.
A.M.Rocha Júnior, B.J. Vieira, L.C.F. de Andrade, F.M. Aarestrup, Effects of low-level laser therapy on the progress of wound healing in humans: the contribution of in vitro and in vivo experimental studies. J vasc bras [Internet]. (2007), 6(3):257–65. Available from: https://doi.org/10.1590/S1677-54492007000300009
L.S.Neves, C.M. Souza & Silva, J.F.C.Henriques, R.H. Cançado, R.P.Henriques, G.Janson, A utilização do laser em Ortodontia. R Dental Press Ortodon Ortop Facial. (2005), 10(5):149–156, ISSN: 1415-5419
R.P.B.Lobato, M.A.Kinalski, T.M.Martins, B.A. Agostini, C.D.Bergoli, M. Bertolini, F. dos Santos, Influence of low-level laser therapy on implant stability in implants placed in fresh extraction sockets: A randomized clinical trial. Clin Implant Dent Relat Res. (2020), Jun;22(3):261-269. doi: 10.1111/cid.12904. Epub 2020 Apr 24. PMID: 32329198.
G.A.M.D da Fonseca, M.F.X.B.Cavalcanti, J.D. de Souza Maior, J.S. Pereira, L.A. Pinto, M.Matias, L. Frigo, Laser-photobiomodulation on titanium implant bone healing in a rat model: comparison between 660- and 808-nm wavelength, Lasers Med Sci. (2022), 37(4):2179-2184. doi: 10.1007/s10103-021-03481-0. Epub 2022 Jan 14. PMID: 35028766.
V. Manteifel, L.Bakeeva, T.Karu, Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: the appearance of giant mitochondria, J Photochem Photobiol B. (1997) 38(1):25-30. doi: 10.1016/s1011-1344(96)07426-x. PMID: 9134752.
M.M. Hidalgo, E.N.Itano, C.S. Nishimura, W. Trevisan Junior, M.J. Avila-Campos, Evaluation of the cellular immune response in patients with periodontitis. Periodontia, Rev Odontol Univ São Paulo. (1998), 12 (2) https://doi.org/10.1590/S0103-06631998000200006
A.C. Alves, R. Vieira, E. Leal-Junior, S.Santos,A.P. Ligeiro, R. Albertini, J. Junior, P. Carvalho, Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther. (2013), 15, R116. https://doi.org/10.1186/ar4296.
C.D. Cerdeira, M.R.P. Lima Brigagão, M.L. Carli, C.S. Ferreira, G.O.I.Moraes, H. Hadad, J.A.C.Hanemann,M.R.Hamblin, F.F. Sperandio, Low-level laser therapy stimulates the oxidative burst in human neutrophils and increases their fungicidal capacity. J. Biophoton. (2016) 9:1180-1188. https://doi.org/10.1002/jbio.201600035.
P.K. Dagur, J.P. McCoy JP Jr, Collection, Storage, and Preparation of Human Blood Cells. Curr Protoc Cytom. (2015).1,(73):5.1.1-5.1.16. doi: 10.1002/0471142956.cy0501s73. PMID: 26132177; PMCID: PMC4524540.
H.Oh, B. Siano, S.Diamond, Neutrophil isolation protocol, J Vis Exp. (2008), 23, (17):745. doi: 10.3791/745. PMID: 19066523; PMCID: PMC3074468.
T.Chile, M.A.H.Z. Fortes, M.L.C.Corrêa-Giannella, H.P. Bretani, D.A. Maria, D.R.D. Puga, V.S. Kubrusly, E.M. Novak, T. Bacchela, R.R. Giorgi, HOXB7 mRNA is overexpressed in pancreatic ductal adenocarcinomas and its knockdown induces cell cycle arrest and apoptosis. BMC Cancer. (2013),13, 451. https://doi.org/10.1186/1471-2407-13-451
F. Faião-Flores, P.R.Coelho, J.D.Arruda-Neto, S.S. Maria-Engler, D.A. Maria, Cell cycle arrest, extracellular matrix changes, and intrinsic apoptosis in human melanoma cells are induced by Boron Neutron Capture Therapy, Toxicol In Vitro. (2013), 27(4):1196-204. doi: 10.1016/j.tiv.2013.02.006. Epub 2013 Feb 24. PMID: 23462526.
J.Ferreira, C. Paolella, C. Ramos, A.L.Lamond, Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories,J Cell Biol. (1997), Dec 29;139(7):1597-610. doi: 10.1083/jcb.139.7.1597.
S.Y.Tam, V.C.W.Tam, S.Ramkumar, M.L.Khaw, H.K.W.Law, S.W.Y.Lee, Review on the Cellular Mechanisms of Low-Level Laser Therapy Use in Oncology, Front Oncol. (2020), 24;10:1255. doi: 10.3389/fonc.2020.01255. PMID: 32793501; PMCID: PMC7393265.
S. Heinzel, J.M.Marchingo, M.B.Horton, P.D.Hodgkin, The regulation of lymphocyte activation and proliferation. Curr Opin Immunol. (2018), 51:32-38. doi: 10.1016/j.coi.2018.01.002. Epub 2018 Feb 3. PMID: 29414529.
- M. F. X. B. Cavalcanti, D. A. Maria, N. de Isla, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, R. A. M. B. Lopes-Martins, F. Diomede, O. Trubiani, and L. Frigo, Evaluation of the Proliferative Effects Induced by Low-Level Laser Therapy in Bone Marrow Stem Cell Culture, Photomedicine and Laser Surgery (2015), 33:12, 610-616. doi.org/10.1089/pho.2014.38
X. Gao, D. Xing, Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16, 4 (2009), https://doi.org/10.1186/1423-0127-16-4
M.S. Al Musawi, M.S. Jaafar, B. Al-Gailani, N.M. Ahmed, M. Fatanah, M. Suhaimi & S. Nursakinah, Effects of low-level laser irradiation on human blood lymphocytes in vitro, Lasers Med Sci. (2017), Feb;32(2):405-411. doi: 10.1007/s10103-016-2134-1. Epub 2017 Jan 3.
I. Stadler, R. Evans, B. Kolb, J.O.Naim, V.Narayan, N.Buehner, R.J.Lanzafame, In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med. (2000), 27(3):255-61. doi: 10.1002/1096-9101(2000), 27:3<255::aid-lsm7>3.0.co;2-l. PMID: 11013387).
M.H.Layla Al-Ameri, A.M.A Maki, A. H. Ad'hiah, Q. Wang, M.H.M ALQaisi, Cell Cycle Response to Low Power Laser Irradiation in Jurkat E6.1 T-lymphocyte Cell Line. Journal of Biology. (2014), Agriculture and Healthcare. www.iiste.org ISSN 2224-3208 (2014),(Paper) ISSN 2225-093X (Online) Vol.4, No.11.
W.Kheder, A. Bouzid, T. Venkatachalam, I.M. Talaat, N.M.Eleman,T.K. Raju, S. Sheela, M.N. Jayakumar, A.A. Maghazachi, A.R.Samsudin, R.Hamoudi, Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues, Int J Mol Sci. (2023), 24(14): 11644).
C. Fu-jun, C. Dong-hui, Y. Qian, L. Chang, T.Li, Effects of titanium ions on the proliferation and activation of T lymphocytes in vitro, Chinese Journal of Tissue Engineering Research. (2016), Vol. 20, (52): 7781-7787. doi:10.3969/j.issn.2095-4344.2016.52.004).
V.Jurisic, T. Srdic-Rajic, G.Konjevic, G. Bogdanovic & M.Colic, TNF Induced Apoptosis is Accompanied with Rapid CD30 and Slower CD45 Shedding from K-562 Cells, The Journal of Membrane Biology. (2011), Vol 239, pages 115-122.
S. von Vietinghoff, K. Ley, Homeostatic regulation of blood neutrophil counts. J Immunol. (2008), 15;181(8):5183-8. doi: 10.4049/jimmunol.181.8.5183. PMID: 18832668; PMCID: PMC2745132.
J. Zdziennicka, A. Junkuszew, M. Latalski, M. Świeca, J. Wessely-Szponder, Long-term Interactions of Circulating Neutrophils with Titanium Implants, the Role of Platelets in Regulation of Leukocyte Function, Int. J. Mol. Sci. (2021), 22(18), 10060.
Hackel, A.Aksamit, K.Bruderek, S. Lang, S. Brandau, TNF- and IL-1β sensitize human MSC for IFN-γ signaling and enhance neutrophil recruitment, Eur J Immunol. (2021), Feb;51(2):319-330. doi: 10.1002/eji.201948336. Epub 2020 Sep 24.
E.C. Jacobson, L.Jain, M.H.Vickers, A.L.Olins, D.E.Olins, J.K.Perry, J.M.O'Sullivan, TNF- Differentially Regulates Cell Cycle Genes in Promyelocytic and Granulocytic HL-60/S4 Cells. G3(Bethesda). (2019) Aug 8;9(8):2775-2786. doi: 10.1534/g3.119.400361. PMID: 31263060; PMCID: PMC6686940.
E. Burger, A.C.S.C. Mendes, G.M.A.C. Bani, M.R.P.L. Brigagão, G.B. Santos, L.C.C. Malaquias, J.K.Chavasco, L.M.Verinaud, Z.P. de Camargo, M.R. Hamblin, F.F.Sperandio, Low-level Laser Therapy to the Mouse Femur Enhances the Fungicidal Response of Neutrophils against Paracoccidioides brasiliensis. PLoS Negl Trop Dis. (2015), 9(2): e0003541. https://doi.org/10.1371/journal.pntd.0003541
K. Rupel, L.Zupin, A.Colliva, A.Kamada, A.Poropat, G.Ottaviani, M.Gobbo, L.Fanfoni, R.Gratton, M.Santoro, R.Di Lenarda, M.Biasotto, S.Zacchigna, Photobiomodulation at Multiple Wavelengths Differentially Modulates Oxidative Stress In Vitro and In Vivo. Oxid Med Cell Longev. (2018), Nov 11;2018:6510159. doi: 10.1155/2018/6510159. PMID: 30534349; PMCID: PMC6252186.
P.Sukwong, S.Kongseng, S.Chaicherd, K.Yoovathaworn, S.Tubtimkuna, D.Pissuwan, Comparison effects of titanium dioxide nanoparticles on immune cells in adaptive and innate immune system. IET Nanobiotechnol. (2017), Aug 1;11(7):759–65. doi: 10.1049/iet-nbt.2016.0205. PMCID: PMC8676467.)
N.A. Gamasaee, H.A. Muhammad, E. Tadayon, M. Ale-Ebrahim, M. Mirpour, M.Sharifi, A. Salihi, M.S.Shekha, A.A.B. Alasady, F.M.Aziz,K. Akhtari, A. Hasan, M. Falahati, The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes, J Biomol Struct Dyn. (2020), Aug;38(12):3676-3686. doi: 10.1080/07391102.2019.1662850. Epub 2019 Sep 12.
C. Xiuping, B.T. Andersen, M. Hill, J. Zhang, F. Booth, C. Zhang, Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction, Curr Hypertens Rev. (2008),Nov; 4(4): 245–255. doi: 10.2174/157340208786241336.
I. Stadler, R.Evans, B.Kolb, J.O.Naim, V.Narayan, N.Buehner, R.J.Lanzafame, In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med. (2000),27(3):255-61.doi: 10.1002/1096-9101(2000)27:3<255::aid-lsm7>3.0.co;2-l. PMID: 11013387
K. Babin, D.M. Goncalves, D. Girard, Nanoparticles enhance the ability of human neutrophils to exert phagocytosis by a Syk-dependent mechanism, Biochimica et Biophysica Acta (BBA) - (2015), General Subjects Volume 1850, Issue 11, November, Pages 2276-228.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Marcos Fernando Xisto Braga Cavalcanti , Rosely Cabette Barbosa Alves , Angelina Cirelli Moraes , Francesca Diomede, Oriana Trubiani, Durvanei Augusto Maria