Advancing Neuroimaging Frontiers: A Comprehensive Review of Novel Diagnostic Techniques in Neuroradiology and Their Clinical Applications
PDF

Palavras-chave

Neuroradiology. Advanced imaging techniques. Magnetic Resonance Imaging (MRI). Computed Tomography (CT). Neurological diagnosis and management

Como Citar

Vitrio, B., Destefani , V. C., & Destefani, A. C. (2024). Advancing Neuroimaging Frontiers: A Comprehensive Review of Novel Diagnostic Techniques in Neuroradiology and Their Clinical Applications. Brazilian Journal of Implantology and Health Sciences, 6(8), 3962–3983. https://doi.org/10.36557/2674-8169.2024v6n8p3962-3983

Resumo

The review article provides a comprehensive overview of the latest advancements in neuroradiological techniques and their clinical applications. It explores various advanced magnetic resonance imaging (MRI) methods, including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS), as well as developments in computed tomography (CT) technology, such as multidetector CT (MDCT) and dual-energy CT (DECT). The article discusses the principles, applications, and limitations of these techniques, highlighting their impact on patient care, particularly in diagnosing and managing neurological conditions, including cerebrovascular diseases, brain tumors, neurodegenerative disorders, and traumatic brain injuries. The review also addresses the challenges and potential future directions in neuroradiology.

https://doi.org/10.36557/2674-8169.2024v6n8p3962-3983
PDF

Referências

Acosta-Cabronero J, Nestor PJ. Diffusion tensor imaging in Alzheimer's disease: insights into the limbic-diencephalic network and methodological considerations. Frontiers in Aging Neuroscience. 2014;6:266.

Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. Journal of Digital Imaging. 2017;30(4):449-459.

Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Annals of Neurology. 2006;60(5):508-517.

Barthel H, Schroeter ML, Hoffmann KT, Sabri O. PET/MR in dementia and other neurodegenerative diseases. Seminars in Nuclear Medicine. 2015;45(3):224-233.

Beckmann EC. CT scanning the early days. The British Journal of Radiology. 2006;79(937):5-8.

Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. Journal of Nuclear Medicine. 2012;53(1):59-71.

Campbell BC, Ma H, Ringleb PA, Parsons MW, Churilov L, Bendszus M, et al. Extending thrombolysis to 4· 5–9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. The Lancet. 2019;394(10193):139-147.

Chatterjee A, Somayaji NR, Kabakis IM. Artificial intelligence detects large vessel occlusion on CTA in acute stroke with high accuracy. Radiology: Artificial Intelligence. 2019;1(4):e180011.

Chauvet D, Imbault M, Capelle L, Demene C, Mossad M, Karachi C, et al. In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall in der Medizin. 2016;37(6):584-590.

Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Transactions on Medical Imaging. 2017;36(12):2524-2535.

Di Ieva A, Lam T, Alcaide-Leon P, Bharatha A, Montanera W, Cusimano MD. Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. Journal of Neurosurgery. 2015;123(6):1463-1475.

Elijovich L, Goyal N, Mainali S, Hoit D, Arthur AS, Whitehead M, Choudhri AF. CTA collateral score predicts infarct volume and clinical outcome after endovascular therapy for acute ischemic stroke: a retrospective chart review. J Neurointerv Surg. 2016;8(6):559-562.

Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Acad Radiol. 2016;23(2):220-236.

Galldiks N, Langen KJ, Pope WB. From the clinician's point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol. 2017;19(2):173-184.

Graff-Radford J, Kantarci K. Magnetic resonance spectroscopy in Alzheimer's disease. Neuropsychiatr Dis Treat. 2013;9:687-696.

Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):19-30.

Hwang M, Riggs BJ, Katz J, Seyfert D, Northington F, Shenandoah R, et al. Advanced pediatric neurosonography techniques: contrast-enhanced ultrasonography, elastography, and beyond. J Neuroimaging. 2018;28(2):150-157.

Jain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, et al. Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol. 2008;29(4):694-700.

Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn Reson Med. 2019;81(1):116-128.

Kuo W, Häne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci U S A. 2019;116(45):22737-22745.

Langen KJ, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13(5):279-289.

Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24(10):1989-1998.

Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24(8):1112-1134.

Marinescu RV, Oxtoby NP, Young AL, Bron EE, Toga AW, Weiner MW, et al. The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up. arXiv preprint arXiv:2002.03419. 2020.

Masdeu JC. Future directions in imaging neurodegeneration. Curr Neurol Neurosci Rep. 2017;17(1):9.

Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion‐and T2‐weighted MRI and spectroscopy. Magn Reson Med. 1990;14(2):330-346.

Nagel S, Sinha D, Day D, Reith W, Chapot R, Papanagiotou P, et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int J Stroke. 2020;15(4):403-408.

Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and significant applications in critical care. Int J Vasc Med. 2013;2013.

Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery. 2005;56(1):130-138.

Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270(3):658-79.

Poldrack RA. The future of fMRI in cognitive neuroscience. Neuroimage. 2012;62(2):1216-20.

Postma AA, Das M, Stadler AA, Wildberger JE. Dual-energy CT: what the neuroradiologist should know. Curr Radiol Rep. 2015;3(5):16.

Prada F, Perin A, Martegani A, Aiani L, Solbiati L, Lamperti M, et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery. 2014;74(5):542-52.

Rice L, Bisdas S. The diagnostic value of FDG and amyloid PET in Alzheimer's disease—A systematic review. Eur J Radiol. 2017;94:16-24.

Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, et al. Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. J Neurosci Methods. 2015;250:45-54.

Sieskiewicz A, Lyson T, Mariak Z, Rogowski M. Ultrasonographic assessment of the optic nerve sheath diameter in the diagnosis of idiopathic intracranial hypertension. Acta Neurochir. 2011;153(12):2276-8.

Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E, et al. Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2004;62(9):1468-81.

Sunaert S. Presurgical planning for tumor resectioning. J Magn Reson Imaging. 2006;23(6):887-905.

Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225-36.

Vliegenthart R, Pelgrim GJ, Ebersberger U, Rowe GW, Oudkerk M, Schoepf UJ. Dual-energy CT of the heart. AJR Am J Roentgenol. 2012;199(5_supplement):S54-S63.

Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37(4):979-85.

Zhou H, Vallières M, Bai H, Su C, Tang H, Oldridge D, et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro-Oncology. 2017;19(6):862-70.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Bianca Vitrio, Vinícius Côgo Destefani , Afrânio Côgo Destefani

Downloads

Não há dados estatísticos.