Resumo
This comprehensive review highlights significant innovations in musculoskeletal radiology, emphasizing the integration of advanced imaging techniques that have markedly enhanced diagnostic capabilities. The advent of high-resolution MR neurography, deep learning-driven ultra-fast MRI, MRI-based synthetic CT, and quantitative MRI have transformed diagnostic processes, offering detailed insights into complex musculoskeletal disorders. Additionally, developments in low-field MRI, ultra-high-field 7.0 T MRI, and imaging modalities like dual-energy CT, cone beam CT, kinematic CT, and photon-counting CT further underscore the rapid evolution of musculoskeletal imaging. These technologies improve diagnostic accuracy, patient experience, and safety by reducing exposure times and enhancing comfort. The review discusses each technology's contributions to musculoskeletal diagnostics, their potential clinical applications, and the technical challenges and future directions in integrating these advanced techniques into routine clinical practice.
Referências
Oudeman J, Coolen BF, Mazzoli V, Maas M, Verhamme C, Brink WM, et al. Diffusion-prepared neurography of the brachial plexus with a large field-of-view at 3T. J Magn Reson Imaging [Internet]. 2016 Mar 1 [cited 2024 Jun 25];43(3):644–54. Available from: https://pubmed.ncbi.nlm.nih.gov/26251015/
Chen Y, Schonlieb CB, Lio P, Leiner T, Dragotti PL, Wang G, et al. AI-Based Reconstruction for Fast MRI-A Systematic Review and Meta-Analysis. Vol. 110, Proceedings of the IEEE. 2022.
Liang D, Cheng J, Ke Z, Ying L. Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks. IEEE Signal Process Mag. 2020;37(1).
Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79(6).
Yingchao J, Dongshan F, Wei W. A Review of MRI-based synthetic CT image generation. Chinese Journal of Biomedical Engineering. 2020;39(4).
Keaveney S, Dragan A, Rata M, Blackledge M, Scurr E, Winfield JM, et al. Image quality in whole-body MRI using the MY-RADS protocol in a prospective multi-centre multiple myeloma study. Insights Imaging [Internet]. 2023 Dec 1 [cited 2024 Jun 25];14(1):1–14. Available from: https://insightsimaging.springeropen.com/articles/10.1186/s13244-023-01498-3
Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-echo-time and dixon deep pseudo-CT (ZeDD CT): Direct generation of pseudo-CT images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. Journal of Nuclear Medicine. 2018;59(5).
De Mello R, Ma Y, Ji Y, Du J, Chang EY. Quantitative MRI musculoskeletal techniques: An update. Vol. 213, American Journal of Roentgenology. 2019.
Kijowski R. Standardization of compositional MRI of knee cartilage: Why and how. Vol. 301, Radiology. 2021.
Guermazi A, Roemer FW, Hayashi D. Imaging of osteoarthritis: Update from a radiological perspective. Vol. 23, Current Opinion in Rheumatology. 2011.
Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, et al. Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology. 2019;293(2).
Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage [Internet]. 2012 Aug 15 [cited 2024 Jun 25];62(2):1241–8. Available from: https://pubmed.ncbi.nlm.nih.gov/22063093/
Khodarahmi I, Keerthivasan MB, Brinkmann IM, Grodzki D, Fritz J. Modern Low-Field MRI of the Musculoskeletal System: Practice Considerations, Opportunities, and Challenges. Invest Radiol. 2023;58(1).
Trattnig S, Bogner W, Gruber S, Szomolanyi P, Juras V, Robinson S, et al. Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR Biomed. 2016;29(9).
Juras V, Mlynarik V, Szomolanyi P, Valkovič L, Trattnig S. Magnetic Resonance Imaging of the Musculoskeletal System at 7T: Morphological Imaging and Beyond. Vol. 28, Topics in Magnetic Resonance Imaging. 2019.
Demehri S, Baffour FI, Klein JG, Ghotbi E, Ibad HA, Moradi K, et al. Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions. Vol. 308, Radiology. 2023.
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, et al. Pros and cons of ultra-high-field MRI/MRS for human application. Vol. 109, Progress in Nuclear Magnetic Resonance Spectroscopy. 2018.
Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3).
Pascart T, Budzik JF. Dual-energy computed tomography in crystalline arthritis: knowns and unknowns. Curr Opin Rheumatol [Internet]. 2022 Mar 1 [cited 2024 Jun 25];34(2):103–10. Available from: https://pubmed.ncbi.nlm.nih.gov/35034071/
Zell M, Zhang D, Fitzgerald J. Diagnostic advances in synovial fluid analysis and radiographic identification for crystalline arthritis. Curr Opin Rheumatol [Internet]. 2019 Mar 1 [cited 2024 Jun 25];31(2):134–43. Available from: https://pubmed.ncbi.nlm.nih.gov/30601230/
Doan MK, Long JR, Verhey E, Wyse A, Patel K, Flug JA. Cone-Beam CT of the Extremities in Clinical Practice. Radiographics [Internet]. 2024 Feb 29 [cited 2024 Jun 25];44(3). Available from: https://pubs.rsna.org/doi/10.1148/rg.230143
Bailey J, Solan M, Moore E. Cone-beam computed tomography in orthopaedics. Orthop Trauma. 2022 Aug 1;36(4):194–201.
Posadzy M, Desimpel J, Vanhoenacker F. Cone beam CT of the musculoskeletal system: clinical applications. Vol. 9, Insights into Imaging. 2018.
Richter M, Geerling J, Zech S, Goesling T, Krettek C. Intraoperative three-dimensional imaging with a motorized mobile C-arm (SIREMOBILISO-C-3D) in foot and ankle trauma care: A preliminary report. J Orthop Trauma. 2005;19(4).
Gondim Teixeira PA, Formery AS, Hossu G, Winninger D, Batch T, Gervaise A, et al. Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation. Eur Radiol. 2017;27(2).
Upadhyaya V, Choudur HN. Update on sports imaging. J Clin Orthop Trauma. 2021 Oct 1;21:101555.
Oonk JGM, Dobbe JGG, Strackee SD, Strijkers GJ, Streekstra GJ. Quantification of the methodological error in kinematic evaluation of the DRUJ using dynamic CT. Sci Rep. 2023;13(1).
Carew RM, French J, Morgan RM. 3D forensic science: A new field integrating 3D imaging and 3D printing in crime reconstruction. Forensic Sci Int [Internet]. 2021 Jan 1 [cited 2024 Jun 25];3. Available from: https://pubmed.ncbi.nlm.nih.gov/34746730/
Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: Technical principles and clinical prospects. Vol. 289, Radiology. 2018.
Pourmorteza A, Symons R, Henning A, Ulzheimer S, Bluemke DA. Dose Efficiency of Quarter-Millimeter Photon-Counting Computed Tomography: First-in-Human Results. Invest Radiol. 2018;53(6).
Rajendran K, Löbker C, Schon BS, Bateman CJ, Younis RA, de Ruiter NJA, et al. Quantitative imaging of excised osteoarthritic cartilage using spectral CT. Eur Radiol. 2017;27(1).
Amato C, Susenburger M, Lehr S, Kuntz J, Gehrke N, Franke D, et al. Dual-contrast photon-counting micro-CT using iodine and a novel bismuth-based contrast agent. Phys Med Biol. 2023;68(13).

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Daniella Gomes Rodrigues de Moraes , Juliana Coimbra de Mendonça, Mariana Melo Almeida, Afrânio Côgo Destefani , Vinícius Côgo Destefani