Cárie na infância: epidemiologia, etiologia e prevenção.
PDF

Palavras-chave

Cárie; Primeira infância; Odontopediatria, Epidemiologia

Como Citar

Bozano de Souza , P., & Benitez de Paula , F. C. . (2021). Cárie na infância: epidemiologia, etiologia e prevenção. Brazilian Journal of Implantology and Health Sciences, 3(6), 30–48. https://doi.org/10.36557/2674-8169.2021v3n6p30-48

Resumo

A cárie na primeira infância (CPI) é uma das doenças mais prevalentes em crianças em todo o mundo. A CPI é impulsionada por um estado disbiótico dos microrganismos orais causado principalmente por uma dieta rica em açúcar. Além disso, a má higiene oral ou a remoção insuficiente da placa dentária levam à rápida progressão da CPI. A CPI não só leva à destruição dentária e dor nas crianças, mas também afeta a qualidade de vida dos cuidadores. Crianças com CPI extensa apresentam alto risco de desenvolver cárie com a dentição permanente ou terão outros problemas para falar e / ou comer. Para prevenir a CPI, várias estratégias devem ser levadas em consideração. As crianças devem escovar os dentes com dentifrícios que contenham ingredientes suaves, como surfactantes suaves e agentes que apresentem propriedades antiaderentes em relação aos microrganismos orais. Os pais / responsáveis ​​devem ajudar seus filhos a escovar os dentes. Além disso, agentes remineralizantes e não tóxicos devem ser incluídos na formulação do creme dental. Dois agentes biomiméticos promissores para higiene bucal de crianças são fosfato de cálcio amorfo [Cax (PO 4 ) y n H 2 O] e hidroxiapatita [Ca 5 (PO 4 ) 3 (OH)].

https://doi.org/10.36557/2674-8169.2021v3n6p30-48
PDF

Referências

R. Naidu, J. Nunn, and E. Donnelly-Swift, “Oral health-related quality of life and early childhood caries among preschool children in Trinidad,” BMC Oral Health, vol. 16, no. 1, p. 128, 2016.View at: Publisher Site | Google Scholar

S. L. Filstrup, D. Briskie, M. da Fonseca, L. Lawrence, A. Wandera, and M. R. Inglehart, “Early childhood caries and quality of life: child and parent perspectives,” Pediatric Dentistry, vol. 25, no. 5, pp. 431–440, 2003.View at: Google Scholar

J. Abanto, T. S. Carvalho, F. M. Mendes, M. T. Wanderley, M. Bonecker, and D. P. Raggio, “Impact of oral diseases and disorders on oral health-related quality of life of preschool children,” Community Dentistry and Oral Epidemiology, vol. 39, no. 2, pp. 105–114, 2011.View at: Publisher Site | Google Scholar

P. S. Casamassimo, S. Thikkurissy, B. L. Edelstein, and E. Maiorini, “Beyond the dmft: the human and economic cost of early childhood caries,” Journal of the American Dental Association, vol. 140, no. 6, pp. 650–657, 2009.View at: Publisher Site | Google Scholar

S. Chrisopoulos and J. E. Harford, Oral Health and Dental Care in Australia: Key Facts and Figures 2015, Australian Institute of Health and Welfare and the University of Adelaide, Canberra, ACT, Australia, 2016.

A. J. Righolt, M. Jevdjevic, W. Marcenes, and S. Listl, “Global-, regional-, and country-level economic impacts of dental diseases in 2015,” Journal of Dental Research, vol. 97, no. 5, pp. 501–507, 2018.View at: Publisher Site | Google Scholar

A. BaniHani, C. Deery, J. Toumba, T. Munyombwe, and M. Duggal, “The impact of dental caries and its treatment by conventional or biological approaches on the oral health-related quality of life of children and carers,” International Journal of Paediatric Dentistry, vol. 28, no. 2, pp. 266–276, 2017.View at: Publisher Site | Google Scholar

T. Vos, A. A. Abajobir, K. H. Abate et al., “Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study,” The Lancet, vol. 390, no. 10100, pp. 1211–1259, 2016.View at: Publisher Site | Google Scholar

H. Colak, C. T. Dulgergil, M. Dalli, and M. M. Hamidi, “Early childhood caries update: a review of causes, diagnoses, and treatments,” Journal of Natural Science, Biology, and Medicine, vol. 4, no. 1, pp. 29–38, 2013.View at: Publisher Site | Google Scholar

F. Meyer, A. Karch, K. M. Schlinkmann et al., “Sociodemographic determinants of spatial disparities in early childhood caries: an ecological analysis in Braunschweig, Germany,” Community Dentistry and Oral Epidemiology, vol. 45, no. 5, pp. 442–448, 2017.View at: Publisher Site | Google Scholar

A. Alkhtib, A. Ghanim, M. Temple-Smith, L. B. Messer, M. Pirotta, and M. Morgan, “Prevalence of early childhood caries and enamel defects in four and five-year old Qatari preschool children,” BMC Oral Health, vol. 16, p. 73, 2016.View at: Publisher Site | Google Scholar

C. J. Oulis, K. Tsinidou, G. Vadiakas, E. Mamai-Homata, A. Polychronopoulou, and T. Athanasouli, “Caries prevalence of 5, 12 and 15-year-old Greek children: a national pathfinder survey,” Community Dental Health, vol. 29, no. 1, pp. 29–32, 2012.View at: Google Scholar

B. A. Bugis, “Early childhood caries and the impact of current U.S. Medicaid program: an overview,” International Journal of Dentistry, vol. 2012, Article ID 348237, 7 pages, 2012.View at: Publisher Site | Google Scholar

R. Basner, R. M. Santamaría, J. Schmoeckel, E. Schüler, and C. Splieth, Epidemiologische Begleituntersuchungen zur Gruppenprophylaxe 2016, DAJ-Deutsche Arbeitsgemeinschaft für Jugendzahnpflege e. V, Bonn, Germany, 2018.

K. M. Milsom, A. S. Blinkhorn, and M. Tickle, “The incidence of dental caries in the primary molar teeth of young children receiving National Health Service funded dental care in practices in the North West of England,” British Dental Journal, vol. 205, p. E14, 2008.View at: Publisher Site | Google Scholar

S. D. Shantinath, D. Breiger, B. J. Williams, and J. E. Hasazi, “The relationship of sleep problems and sleep-associated feeding to nursing caries,” Pediatric Dentistry, vol. 18, no. 5, pp. 375–378, 1996.View at: Google Scholar

H. Chen, S. Tanaka, K. Arai, S. Yoshida, and K. Kawakami, “Insufficient sleep and incidence of dental caries in deciduous teeth among children in Japan: a population-based cohort study,” Journal of Pediatrics, pii: S0022-3476(18)30380-9, 2018.View at: Publisher Site | Google Scholar

I. Kraljevic, C. Filippi, and A. Filippi, “Risk indicators of early childhood caries (ECC) in children with high treatment needs,” Swiss Dental Journal, vol. 127, no. 5, pp. 398–410, 2017.View at: Google Scholar

M. Hooley, H. Skouteris, C. Boganin, J. Satur, and N. Kilpatrick, “Parental influence and the development of dental caries in children aged 0–6 years: a systematic review of the literature,” Journal of Dentistry, vol. 40, no. 11, pp. 873–885, 2012.View at: Publisher Site | Google Scholar

S. E. Jabbarifar, N. Ahmady, S. A. R. Sahafian, F. Samei, and S. Soheillipour, “Association of parental stress and early childhood caries,” Dental Research Journal, vol. 6, no. 2, pp. 65–70, 2009.View at: Google Scholar

K. Narksawat, A. Boonthum, and U. Tonmukayakul, “Roles of parents in preventing dental caries in the primary dentition among preschool children in Thailand,” Asia-Pacific Journal of Public Health, vol. 23, no. 2, pp. 209–216, 2011.View at: Publisher Site | Google Scholar

V. Zijnge, M. B. van Leeuwen, J. E. Degener et al., “Oral biofilm architecture on natural teeth,” PLoS One, vol. 5, no. 2, Article ID e9321, 2010.View at: Publisher Site | Google Scholar

F. Meyer and J. Enax, “Die mundhöhle als ökosystem,” Biologie in Unserer Zeit, vol. 48, no. 1, pp. 62–68, 2018.View at: Publisher Site | Google Scholar

B. Rosan and R. J. Lamont, “Dental plaque formation,” Microbes and Infection, vol. 2, no. 13, pp. 1599–1607, 2000.View at: Publisher Site | Google Scholar

R. Huang, M. Li, and R. L. Gregory, “Bacterial interactions in dental biofilm,” Virulence, vol. 2, no. 5, pp. 435–444, 2011.View at: Publisher Site | Google Scholar

D. Verma, P. K. Garg, and A. K. Dubey, “Insights into the human oral microbiome,” Archives of Microbiology, vol. 200, no. 4, pp. 525–540, 2018.View at: Publisher Site | Google Scholar

X. Xu, J. He, J. Xue et al., “Oral cavity contains distinct niches with dynamic microbial communities,” Environmental Microbiology, vol. 17, no. 3, pp. 699–710, 2015.View at: Publisher Site | Google Scholar

Y.-H. Li and X. Tian, “Quorum sensing and bacterial social interactions in biofilms,” Sensors, vol. 12, no. 3, pp. 2519–2538, 2012.View at: Publisher Site | Google Scholar

H. Sztajer, S. P. Szafranski, J. Tomasch et al., “Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans,” ISME Journal, vol. 8, no. 11, pp. 2256–2271, 2014.View at: Publisher Site | Google Scholar

M. L. Falsetta, M. I. Klein, P. M. Colonne et al., “Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo,” Infection and Immunity, vol. 82, no. 5, pp. 1968–1981, 2014.View at: Publisher Site | Google Scholar

T. T. More, J. S. Yadav, S. Yan, R. D. Tyagi, and R. Y. Surampalli, “Extracellular polymeric substances of bacteria and their potential environmental applications,” Journal of Environmental Management, vol. 144, pp. 1–25, 2014.View at: Publisher Site | Google Scholar

H. Koo, M. L. Falsetta, and M. I. Klein, “The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm,” Journal of Dental Research, vol. 92, no. 12, pp. 1065–1073, 2013.View at: Publisher Site | Google Scholar

P. Lingstrom, F. O. van Ruyven, J. van Houte, and R. Kent, “The pH of dental plaque in its relation to early enamel caries and dental plaque flora in humans,” Journal of Dental Research, vol. 79, no. 2, pp. 770–777, 2000.View at: Publisher Site | Google Scholar

N. Takahashi and B. Nyvad, “The role of bacteria in the caries process: ecological perspectives,” Journal of Dental Research, vol. 90, no. 3, pp. 294–303, 2011.View at: Publisher Site | Google Scholar

M. Kilian, I. L. C. Chapple, M. Hannig et al., “The oral microbiome—an update for oral healthcare professionals,” British Dental Journal, vol. 221, no. 10, pp. 657–666, 2016.View at: Publisher Site | Google Scholar

R. Touger-Decker and C. van Loveren, “Sugars and dental caries,” American Journal of Clinical Nutrition, vol. 78, no. 4, pp. 881S–892S, 2003.View at: Publisher Site | Google Scholar

I. Struzycka, “The oral microbiome in dental caries,” Polish Journal of Microbiology, vol. 63, no. 2, pp. 127–135, 2014.View at: Google Scholar

T. Klinke, M. Urban, C. Luck, C. Hannig, M. Kuhn, and N. Kramer, “Changes in Candida spp., mutans streptococci and lactobacilli following treatment of early childhood caries: a 1-year follow-up,” Caries Research, vol. 48, no. 1, pp. 24–31, 2014.View at: Publisher Site | Google Scholar

S. N. Peterson, T. Meissner, A. I. Su et al., “Functional expression of dental plaque microbiota,” Frontiers in Cellular and Infection Microbiology, vol. 4, p. 108, 2014.View at: Publisher Site | Google Scholar

A. Simon-Soro, I. Tomas, R. Cabrera-Rubio, M. D. Catalan, B. Nyvad, and A. Mira, “Microbial geography of the oral cavity,” Journal of Dental Research, vol. 92, no. 7, pp. 616–621, 2013.View at: Publisher Site | Google Scholar

A. Simon-Soro and A. Mira, “Solving the etiology of dental caries,” Trends in Microbiology, vol. 23, no. 2, pp. 76–82, 2015.View at: Publisher Site | Google Scholar

E. Hajishengallis, Y. Parsaei, M. I. Klein, and H. Koo, “Advances in the microbial etiology and pathogenesis of early childhood caries,” Cell Host & Microbe, vol. 32, no. 1, pp. 24–34, 2017.View at: Publisher Site | Google Scholar

F. Teng, F. Yang, S. Huang et al., “Prediction of early childhood caries via spatial-temporal variations of oral microbiota,” Cell Host & Microbe, vol. 18, no. 3, pp. 296–306, 2015.View at: Publisher Site | Google Scholar

S. V. Dorozhkin and M. Epple, “Biological and medical significance of calcium phosphates,” Angewandte Chemie International Edition, vol. 41, no. 17, pp. 3130–3146, 2002.View at: Publisher Site | Google Scholar

J. Enax and M. Epple, “Synthetic hydroxyapatite as a biomimetic oral care agent,” Oral Health & Preventive Dentistry, vol. 16, no. 1, pp. 7–19, 2018.View at: Publisher Site | Google Scholar

P. W. Brown and B. Constantz, Hydroxyapatite and Related Materials, CRC Press, Boca Raton, FL, USA, 1994.

H. A. Lowenstam and S. Weiner, On Biomineralization, Oxford University Press, Oxford, UK, 1989.

M. F. Teaford, M. M. Smith, and M. W. J. Ferguson, Development, Function and Evolution of Teeth, Cambridge University Press, Cambridge, UK, 2000.

M. S. Tung and D. Skrtic, “Interfacial properties of hydroxyapatite, fluoroapatite and octacalcium phosphate,” Monographs in Oral Science, vol. 18, pp. 112–129, 2001.View at: Publisher Site | Google Scholar

J. Enax, O. Prymak, D. Raabe, and M. Epple, “Structure, composition, and mechanical properties of shark teeth,” Journal of Structural Biology, vol. 178, no. 3, pp. 290–299, 2012.View at: Publisher Site | Google Scholar

E. D. Yilmaz, S. Bechtle, H. Özcoban, A. Schreyer, and G. A. Schneider, “Fracture behavior of hydroxyapatite nanofibers in dental enamel under micropillar compression,” Scripta Materialia, vol. 68, no. 6, pp. 404–407, 2013.View at: Publisher Site | Google Scholar

K.-J. Moll and M. Moll, Kurzlehrbuch Anatomie, Elsevier, New York, NY, USA, 2000.

C. E. Smith, R. Wazen, Y. Hu et al., “Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin,” European Journal of Oral Sciences, vol. 117, no. 5, pp. 485–497, 2009.View at: Publisher Site | Google Scholar

M. A. De Menezes Oliveira, C. P. Torres, J. M. Gomes-Silva et al., “Microstructure and mineral composition of dental enamel of permanent and deciduous teeth,” Microscopy Research and Technique, vol. 73, no. 5, pp. 572–577, 2010.View at: Google Scholar

A. Lucchese and E. Storti, “Morphological characteristics of primary enamel surfaces versus permanent enamel surfaces: SEM digital analysis,” European Journal of Paediatric Dentistry, vol. 12, no. 3, pp. 179–183, 2011.View at: Google Scholar

P. R. Wilson and A. D. Beynon, “Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography,” Archives of Oral Biology, vol. 34, no. 2, pp. 85–88, 1989.View at: Publisher Site | Google Scholar

M. C. Z. Alcantara-Galeana, R. Contreras-Bulnes, L. E. Rodríguez-Vilchis et al., “Microhardness, structure, and morphology of primary enamel after phosphoric acid, self-etching adhesive, and Er:YAG laser etching,” International Journal of Optics, vol. 2017, Article ID 7634739, 8 pages, 2017.View at: Publisher Site | Google Scholar

C. M. Zamudio-Ortega, R. Contreras-Bulnes, R. J. Scougall-Vilchis, R. A. Morales-Luckie, O. F. Olea-Mejia, and L. E. Rodriguez-Vilchis, “Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis,” European Journal of Paediatric Dentistry, vol. 15, no. 3, pp. 275–280, 2014.View at: Google Scholar

S. Anil and P. S. Anand, “Early childhood caries: prevalence, risk factors, and prevention,” Frontiers in Pediatrics, vol. 5, p. 157, 2017.View at: Publisher Site | Google Scholar

C. A. Feldens, P. H. Rodrigues, G. de Anastacio, M. R. Vitolo, and B. W. Chaffee, “Feeding frequency in infancy and dental caries in childhood: a prospective cohort study,” International Dental Journal, vol. 68, no. 2, pp. 113–121, 2017.View at: Publisher Site | Google Scholar

A. H. Wyne, “Early childhood caries: nomenclature and case definition,” Community Dentistry and Oral Epidemiology, vol. 27, no. 5, pp. 313–315, 1999.View at: Publisher Site | Google Scholar

W. M. Avila, I. A. Pordeus, S. M. Paiva, and C. C. Martins, “Breast and bottle feeding as risk factors for dental caries: a systematic review and meta-analysis,” PLoS One, vol. 10, no. 11, Article ID e0142922, 2015.View at: Publisher Site | Google Scholar

P. Prakash, P. Subramaniam, B. H. Durgesh, and S. Konde, “Prevalence of early childhood caries and associated risk factors in preschool children of urban Bangalore, India: a cross-sectional study,” European Journal of Dentistry, vol. 6, no. 2, pp. 141–152, 2012.View at: Google Scholar

R. J. Berkowitz, “Causes, treatment and prevention of early childhood caries: a microbiologic perspective,” Journal of the Canadian Dental Association, vol. 69, no. 5, pp. 304–307, 2003.View at: Google Scholar

“Tooth eruption,” Journal of the American Dental Association, vol. 137, no. 1, p. 127, 2006.View at: Publisher Site | Google Scholar

H. Limeback and C. Robinson, “Fluoride therapy,” in Comprehensive Preventive Dentistry, pp. 251–282, John Wiley & Sons, Ltd., Hoboken, NY, USA, 2012.View at: Google Scholar

V. C. Marinho, H. V. Worthington, T. Walsh, and L. Y. Chong, “Fluoride gels for preventing dental caries in children and adolescents,” Cochrane Database of Systematic Reviews, vol. 6, p. CD002280, 2015.View at: Publisher Site | Google Scholar

T. Walsh, H. V. Worthington, A. M. Glenny, P. Appelbe, V. C. Marinho, and X. Shi, “Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents,” Cochrane Database of Systematic Reviews, vol. 1, p. Cd007868, 2010.View at: Publisher Site | Google Scholar

C. V. Loveren, Toothpastes, vol. 23, Karger Publishers, Basel, Switzerland, 2013.

European Academy of Paediatric Dentistry, “Guidelines on the use of fluoride in children: an EAPD policy document,” European Archives of Paediatric Dentistry, vol. 10, no. 3, pp. 129–135, 2009.View at: Google Scholar

A. L. Bronckers, D. M. Lyaruu, and P. K. DenBesten, “The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis,” Journal of Dental Research, vol. 88, no. 10, pp. 877–893, 2009.View at: Publisher Site | Google Scholar

J. M. ten Cate, “Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention,” European Journal of Oral Sciences, vol. 105, no. 5, pp. 461–465, 1997.View at: Publisher Site | Google Scholar

J. A. Weatherell, C. Robinson, and A. S. Hallsworth, “Changes in the fluoride concentration of the labial enamel surface with age,” Caries Research, vol. 6, no. 4, pp. 312–324, 1972.View at: Publisher Site | Google Scholar

F. Muller, C. Zeitz, H. Mantz et al., “Elemental depth profiling of fluoridated hydroxyapatite: saving your dentition by the skin of your teeth?” Langmuir, vol. 26, no. 24, pp. 18750–18759, 2010.View at: Google Scholar

F. Neues, A. Klocke, F. Beckmann, J. Herzen, J. P. Loyola-Rodriguez, and M. Epple, “Mineral distribution in highly fluorotic and in normal teeth: a synchrotron microcomputer tomographic study,” Materialwissenschaft und Werkstofftechnik, vol. 40, no. 4, pp. 294–296, 2009.View at: Publisher Site | Google Scholar

L. M. Marin, J. A. Cury, L. M. Tenuta, J. E. Castellanos, and S. Martignon, “Higher fluorosis severity makes enamel less resistant to demineralization,” Caries Research, vol. 50, no. 4, pp. 407–413, 2016.View at: Publisher Site | Google Scholar

B. Ogaard, “Effects of fluoride on caries development and progression in vivo,” Journal of Dental Research, vol. 69, pp. 813–819, 1990.View at: Publisher Site | Google Scholar

S. V. Dorozhkin, “Calcium orthophosphates (CaPo4) and dentistry,” Bioceramics Development and Applications, vol. 6, no. 96, 2016.View at: Google Scholar

K. Kani, M. Kani, A. Isozaki, H. Shintani, T. Ohashi, and T. Tokumoto, “Effect of apatite-containing dentifrices on dental caries in school children,” Journal of Dental Health, vol. 39, no. 1, pp. 104–109, 1989.View at: Publisher Site | Google Scholar

U. Schlagenhauf, K.-H. Kunzelmann, C. Hannig et al., “Microcrystalline hydroxyapatite is not inferior to fluorides in clinical caries prevention: a randomized, double-blind, non-inferiority trial,” bioRxiv, 2018.View at: Publisher Site | Google Scholar

K. Najibfard, K. Ramalingam, I. Chedjieu, and B. T. Amaechi, “Remineralization of early caries by a nano-hydroxyapatite dentifrice,” Journal of Clinical Dentistry, vol. 22, no. 5, pp. 139–143, 2011.View at: Google Scholar

A. Kensche, C. Holder, S. Basche, N. Tahan, C. Hannig, and M. Hannig, “Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ,” Archives of Oral Biology, vol. 80, pp. 18–26, 2017.View at: Publisher Site | Google Scholar

I. Harks, Y. Jockel-Schneider, U. Schlagenhauf et al., “Impact of the daily use of a microcrystal hydroxyapatite dentifrice on de novo plaque formation and clinical/microbiological parameters of periodontal health. A randomized trial,” PLoS One, vol. 11, Article ID e0160142, 2016.View at: Publisher Site | Google Scholar

C. Hannig, S. Basche, T. Burghardt, A. Al-Ahmad, and M. Hannig, “Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ,” Clinical Oral Investigations, vol. 17, no. 3, pp. 805–814, 2013.View at: Publisher Site | Google Scholar

C. Palmieri, G. Magi, G. Orsini, A. Putignano, and B. Facinelli, “Antibiofilm activity of zinc-carbonate hydroxyapatite nanocrystals against Streptococcus mutans and mitis group Streptococci,” Current Microbiology, vol. 67, no. 6, pp. 679–681, 2013.View at: Publisher Site | Google Scholar

S. A. Hegazy and I. R. Salama, “Antiplaque and remineralizing effects of Biorepair mouthwash: a comparative clinical trial,” Pediatric Dental Journal, vol. 26, no. 3, pp. 89–94, 2016.View at: Publisher Site | Google Scholar

M. Lelli, M. Marchetti, I. Foltran et al., “Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study,” Frontiers in Physiology, vol. 5, p. 333, 2014.View at: Publisher Site | Google Scholar

J. Li, X. Xie, Y. Wang et al., “Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: a systematic review,” Journal of Dentistry, vol. 42, no. 7, pp. 769–777, 2014.View at: Publisher Site | Google Scholar

D. L. Bailey, G. G. Adams, C. E. Tsao et al., “Regression of post-orthodontic lesions by a remineralizing cream,” Journal of Dental Research, vol. 88, no. 12, pp. 1148–1153, 2009.View at: Publisher Site | Google Scholar

P. Shen, D. J. Manton, N. J. Cochrane et al., “Effect of added calcium phosphate on enamel remineralization by fluoride in a randomized controlled in situ trial,” Journal of Dentistry, vol. 39, no. 7, pp. 518–525, 2011.View at: Publisher Site | Google Scholar

N. Gupta, C. Mohan Marya, R. Nagpal, S. Singh Oberoi, and C. Dhingra, “A review of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and enamel remineralization,” Compendium of Continuing Education in Dentistry, vol. 37, no. 1, pp. 36–39, 2016.View at: Google Scholar

Y. Wang, J. Li, W. Sun, H. Li, R. D. Cannon, and L. Mei, “Effect of non-fluoride agents on the prevention of dental caries in primary dentition: a systematic review,” PLoS One, vol. 12, no. 8, Article ID e0182221, 2017.View at: Publisher Site | Google Scholar

J. M. ten Cate, “The need for antibacterial approaches to improve caries control,” Advances in Dental Research, vol. 21, no. 1, pp. 8–12, 2009.View at: Publisher Site | Google Scholar

J. Enax and M. Epple, “Die charakterisierung von putzkörpern in zahnpasten,” Deutsche Zahnärztliche Zeitung, vol. 73, pp. 116–124, 2018.View at: Google Scholar

C. H. Splieth, M. Alkilzy, J. Schmitt, C. Berndt, and A. Welk, “Effect of xylitol and sorbitol on plaque acidogenesis,” Quintessence International, vol. 40, no. 4, pp. 279–285, 2009.View at: Google Scholar

M. B. Kowash, A. Pinfield, J. Smith, and M. E. Curzon, “Effectiveness on oral health of a long-term health education programme for mothers with young children,” British Dental Journal, vol. 188, no. 4, pp. 201–205, 2000.View at: Publisher Site | Google Scholar

M. Yaacob, H. V. Worthington, S. A. Deacon et al., “Powered versus manual toothbrushing for oral health,” Cochrane Database of Systematic Reviews, vol. 6, 2014.View at: Google Scholar

M. Muller-Bolla and F. Courson, “Toothbrushing methods to use in children: a systematic review,” Oral Health & Preventive Dentistry, vol. 11, no. 4, pp. 341–347, 2013.View at: Google Scholar

P. M. Glaze and A. B. Wade, “Toothbrush age and wear as it relates to plaque control,” Journal of Clinical Periodontology, vol. 13, no. 1, pp. 52–56, 1986.View at: Publisher Site | Google Scholar

Meyer, F., and J. Enax. "Early childhood caries: epidemiology, aetiology, and prevention." International journal of dentistry 2018 (2018)

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Pâmela Bozano de Souza , Francisca Carla Benitez de Paula

Downloads

Não há dados estatísticos.