O efeito de reforço da nano-zircônia na resistência transversal da base de prótese acrílica reparada.
PDF

Palavras-chave

Nano-zircônia; Prótese; Resistência

Como Citar

Rodrigues, C. V. ., & Ruiz Rufino , B. (2021). O efeito de reforço da nano-zircônia na resistência transversal da base de prótese acrílica reparada. Brazilian Journal of Implantology and Health Sciences, 3(6), 06–29. https://doi.org/10.36557/2674-8169.2021v3n6p06-29

Resumo

Objetivo. O objetivo deste estudo foi avaliar o efeito da incorporação de fibra de vidro, zircônia e nano-zircônia na resistência transversal de base de prótese dentária reparada. Materiais e métodos. Oitenta espécimes de resina acrílica polimerizada termicamente foram preparados e divididos aleatoriamente em oito grupos: um grupo intacto (controle) e sete grupos reparados. Um grupo foi reparado com resina autopolimerizada enquanto os outros seis grupos foram reparados usando resina autopolimerizada reforçada com 2% em peso ou 5% em peso de fibra de vidro, zircônia ou partículas de nano-zircônia. Um teste de flexão de três pontos foi usado para medir a resistência transversal. Os resultados foram analisados ​​usando SPSS e ANOVA de medida repetida e teste post hoc de mínima significância (LSD). Resultados.Entre os grupos reparados, verificou-se que a resina autopolimerizada reforçada com 2 ou 5% em peso de nano-zircônia apresentou a maior resistência transversal. Reparos com resina acrílica autopolimerizada reforçada com 5% em peso de zircônia apresentaram o menor valor de resistência transversal. Não houve diferença significativa entre os grupos reparados com resina de reparo sem reforço, 2% em peso de zircônia e resina reforçada com fibra de vidro. Conclusão. O reforço do material de reparo com nano-zircônia pode melhorar significativamente a resistência transversal de alguns polímeros de base de prótese dentária fraturada.

https://doi.org/10.36557/2674-8169.2021v3n6p06-29
PDF

Referências

U. R. Darbar, R. Huggett, and A. Harrison, “Denture fracture: a survey,” British Dental Journal, vol. 176, no. 9, pp. 342–345, 1994.View at: Publisher Site | Google Scholar

R. S. Seó, K. H. Neppelenbroek, and J. N. A. Filho, “Factors affecting the strength of denture repairs: topics of interest,” Journal of Prosthodontics, vol. 16, no. 4, pp. 302–310, 2007.View at: Publisher Site | Google Scholar

G. L. Polyzois, P. A. Tarantili, M. J. Frangou, and A. G. Andreopoulos, “Fracture force, deflection at fracture, and toughness of repaired denture resin subjected to microwave polymerization or reinforced with wire or glass fiber,” Journal of Prosthetic Dentistry, vol. 86, no. 6, pp. 613–619, 2001.View at: Publisher Site | Google Scholar

J. N. Arioli Filho, L. E. Butignon, R. D. P. Pereira, M. G. Lucas, and F. D. A. Mollo Jr., “Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization,” Journal of Applied Oral Science, vol. 19, no. 3, pp. 249–253, 2011.View at: Google Scholar

S. Suvarna, T. Chhabra, D. Raghav, D. Singh, P. Kumar, and S. Sahoo, “Residual monomer content of repair autopolymerizing resin after microwave postpolymerization treatment,” European Journal of Prosthodontics, vol. 2, no. 1, pp. 28–32, 2014.View at: Publisher Site | Google Scholar

A. I. Zissis, G. L. Polyzois, and S. A. Yannikakis, “Repairs in complete dentures: results of a survey,” Quintessence of Dental Technology, vol. 20, pp. 149–155, 1997.View at: Google Scholar

C. Bural, G. Bayraktar, I. Aydin, I. Yusufoğlu, N. Uyumaz, and M. Hanzade, “Flexural properties of repaired heat-polymerising acrylic resin after wetting with monomer and acetone,” Gerodontology, vol. 27, no. 3, pp. 217–223, 2010.View at: Publisher Site | Google Scholar

I. Kostoulas, V. T. Kavoura, M. J. Frangou, and G. L. Polyzois, “Fracture force, deflection, and toughness of acrylic denture repairs involving glass fiber reinforcement,” Journal of Prosthodontics, vol. 17, no. 4, pp. 257–261, 2008.View at: Publisher Site | Google Scholar

E. A. Hanna, F. K. Shah, and A. A. Gebreel, “Effect of joint surface contours on the transverse and impact strength of denture base resin repaired by various methods: an in vitro study,” Journal of American Science, vol. 6, no. 9, pp. 115–125, 2010.View at: Google Scholar

S. Kirti, M. R. Dhakshaini, and A. K. Gujjari, “Evaluation of transverse bond strength of heat cured acrylic denture base resin repaired using heat polymerizing, autopolymerizing and fiber reinforced composite resin—an in vitro study,” International Journal of Clinical Cases and Investigations, vol. 4, no. 2, pp. 33–43, 2012.View at: Google Scholar

P. K. Vallittu, V. P. Lassila, and R. Lappalainen, “Wetting the repair surface with methyl methacrylate affects the transverse strength of repaired heat-polymerized resin,” The Journal of Prosthetic Dentistry, vol. 72, no. 6, pp. 639–643, 1994.View at: Publisher Site | Google Scholar

M. Vojdani, S. Rezaei, and L. Zareeian, “Effect of chemical surface treatments and repair material on transverse strength of repaired acrylic denture resin,” Indian Journal of Dental Research, vol. 19, no. 1, pp. 2–5, 2008.View at: Publisher Site | Google Scholar

H. Minami, S. Suzuki, Y. Minesaki, H. Kurashige, and T. Tanaka, “In vitro evaluation of the influence of repairing condition of denture base resin on the bonding of autopolymerizing resins,” Journal of Prosthetic Dentistry, vol. 91, no. 2, pp. 164–170, 2004.View at: Publisher Site | Google Scholar

H. D. Stipho, “Repair of acrylic resin denture base reinforced with glass fiber,” The Journal of Prosthetic Dentistry, vol. 80, no. 5, pp. 546–550, 1998.View at: Publisher Site | Google Scholar

E. Nagai, K. Otani, Y. Satoh, and S. Suzuki, “Repair of denture base resin using woven metal and glass fiber: effect of methylene chloride pretreatment,” The Journal of Prosthetic Dentistry, vol. 85, no. 5, pp. 496–500, 2001.View at: Publisher Site | Google Scholar

G. Uzun, N. Hersek, and T. Tinçer, “Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin,” The Journal of Prosthetic Dentistry, vol. 81, no. 5, pp. 616–620, 1999.View at: Publisher Site | Google Scholar

N. V. Asar, H. Albayrak, T. Korkmaz, and I. Turkyilmaz, “Influence of various metal oxides on mechanical and physical properties of heat-cured polymethylmethacrylate denture base resins,” Journal of Advanced Prosthodontics, vol. 5, no. 3, pp. 241–247, 2013.View at: Publisher Site | Google Scholar

A. O. Alhareb and Z. A. Ahmad, “Effect of Al2O3/ZrO2 reinforcement on the mechanical properties of PMMA denture base,” Journal of Reinforced Plastics and Composites, vol. 30, no. 1, pp. 86–93, 2011.View at: Publisher Site | Google Scholar

N. M. Ayad, M. F. Badawi, and A. A. Fatah, “The effect of reinforcement of high-impact acrylic resin with zirconia on some physical and mechanical properties,” Cairo Dental Journal, vol. 24, no. 2, pp. 245–250, 2008.View at: Google Scholar

I. N. Safi, “Evaluation the effect of nano—fillers (TiO2 , AL2O3 , SiO2) addition on glass transition temperature, E-moudulus and coefficient of thermal expansion of acrylic denture base material,” Journal of Baghdad College of Dentistry, vol. 26, no. 1, pp. 37–41, 2014.View at: Publisher Site | Google Scholar

N. S. Ihab and M. Moudhaffar, “Evaluation the effect of modified nano-fillers addition on some properties of heat cured acrylic denture base material,” Journal of Baghdad College of Dentistry, vol. 23, no. 3, pp. 23–29, 2011.View at: Google Scholar

American Dental Association, “Revised American Dental Association Specification no. 12 for denture base polymers,” Journal of the American Dental Association, vol. 90, no. 2, pp. 451–458, 1975.View at: Publisher Site | Google Scholar

R. N. Rached, J. M. Powers, and A. A. Del Bel Cury, “Efficacy of conventional and experimental techniques for denture repair,” Journal of Oral Rehabilitation, vol. 31, no. 11, pp. 1130–1138, 2004.View at: Publisher Site | Google Scholar

M. Alkurt, Z. Yeşil Duymuş, and M. Gundogdu, “Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin,” Journal of Prosthetic Dentistry, vol. 111, no. 1, pp. 71–78, 2014.View at: Publisher Site | Google Scholar

R. Zbigniew and D. Nowakowska, “Mechanical properties of hot curing acrylic resins after reinforced with different kinds of fibers,” International Journal of Biomedical Materials Research, vol. 1, no. 1, pp. 9–13, 2013.View at: Publisher Site | Google Scholar

F. Keyf and G. Uzun, “The effect of glass fibre-reinforcement on the transverse strength, deflection and modulus of elasticity of repaired acrylic resins,” International Dental Journal, vol. 50, no. 2, pp. 93–97, 2000.View at: Publisher Site | Google Scholar

H. D. Stipho and A. S. Stipho, “Effectiveness and durability of repaired acrylic resin joints,” The Journal of Prosthetic Dentistry, vol. 58, no. 2, pp. 249–253, 1987.View at: Publisher Site | Google Scholar

F. Faot, W. J. da Silva, R. S. da Rosa, A. A. Del Bel Cury, and R. C. M. R. Garcia, “Strength of denture base resins repaired with auto- and visible light-polymerized materials,” Journal of Prosthodontics, vol. 18, no. 6, pp. 496–502, 2009.View at: Publisher Site | Google Scholar

R. N. Rached, J. M. Powers, and A. A. Del Bel Cury, “Repair strength of autopolymerizing, microwave, and conventional heat-polymerized acrylic resins,” Journal of Prosthetic Dentistry, vol. 92, no. 1, pp. 79–82, 2004.View at: Publisher Site | Google Scholar

P. K. Vallittu, “The effect of surface treatment of denture acrylic resin on the residual monomer content and its release into water,” Acta Odontologica Scandinavica, vol. 54, no. 3, pp. 188–192, 1996.View at: Publisher Site | Google Scholar

J. A. Kenneth, C. Shen, and H. R. Rawls, Phillips' Science of Dental Materials, Elsevier Saunders, Philadelphia, Pa, USA, 12th edition, 2013.

G. S. Solnit, “The effect of methyl methacrylate reinforcement with silane-treated and untreated glass fibers,” The Journal of Prosthetic Dentistry, vol. 66, no. 3, pp. 310–314, 1991.View at: Publisher Site | Google Scholar

N. Anasane, Y. Ahirrao, D. Chitnis, and S. Meshram, “The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: an in vitro study,” Dental Research Journal, vol. 10, no. 2, pp. 214–219, 2013.View at: Publisher Site | Google Scholar

M. M. Gad, M. A. Helal, M. E. Abdel-Nasser, and M. I. Seif-Elnassr, “Effect of the microwave and reinforcement of repaired acrylic resin on some mechanical properties,” Al-Azhar Journal of Dental Science, vol. 12, no. 1, pp. 65–72, 2009.View at: Google Scholar

J. A. Kenneth, Phillips' Science of Dental Materials, Saunders, Philadelphia, Pa, USA, 11th edition, 2003.

T. Nejatian, A. Johnson, and R. Van Noort, “Reinforcement of denture base resin,” Advances in Science and Technology, vol. 49, pp. 124–129, 2006.View at: Publisher Site | Google Scholar

M. Braden, “Some aspects of the chemistry and physics of dental resins,” Advances in Dental Research, vol. 2, no. 1, pp. 93–97, 1988.View at: Google Scholar

X.-J. Zhang, X.-Y. Zhang, B.-S. Zhu, and C. Qian, “Effect of nano ZrO2 on flexural strength and surface hardness of polymethylmethacrylate,” Shanghai Kou Qiang Yi Xue, vol. 20, no. 4, pp. 358–363, 2011.View at: Google Scholar

M. A. Ahmed and M. I. Ebrahim, “Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin,” World Journal of Nano Science and Engineering, vol. 4, no. 2, pp. 50–57, 2014.View at: Publisher Site | Google Scholar

H. K. Hameed and H. A. Rahman, “The effect of addition nano particle ZrO2 on some properties of autoclave processed heat cure acrylic denture base material,” Journal of Baghdad College of Dentistry, vol. 27, no. 1, pp. 32–39, 2015.View at: Publisher Site | Google Scholar

Gad, Mohammed, et al. "The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base." International journal of dentistry 2016 (2016). Link da licença https://creativecommons.org/licenses/by/4.0/

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Carla Vanessa Rodrigues, Bianca Ruiz Rufino