Resumo
Accurate assessment of clinical atherosclerotic diseases is essential to guide effective therapeutic interventions, and atherogenic indices have emerged as valuable methods in this setting. The complexity of these pathologies demands approaches that go beyond the simple measurement of total cholesterol, requiring tools that consider the interaction between different lipoproteins and other risk factors. In this context, the use of atherogenic indices appears as a promising approach, providing a more comprehensive and refined assessment of atherosclerotic conditions. Objective: To comprehensively analyze scientific studies published in the last 10 years that investigated the use of atherogenic indices as methods of evaluating clinical atherosclerotic diseases. The review seeks to consolidate the available evidence by examining the effectiveness of these indices in early identification, risk stratification and monitoring the progress of atherosclerotic diseases. Methodology: The systematic review was conducted following the PRISMA guidelines. The PubMed, Scielo and Web of Science databases were consulted to identify relevant studies published in the last 10 years. The descriptors used were "atherogenic indices", "atherosclerotic diseases", "clinical assessment", "lipoproteins" and "cardiovascular risk factors". Inclusion criteria considered original studies that investigated the use of atherogenic indices in clinical populations, while exclusion criteria involved studies with unrepresentative samples and inadequate atherosclerotic assessment methods. Results: The results of the review highlight the diversity of available atherogenic indices and their usefulness in evaluating different aspects of atherosclerotic diseases, including prediction of cardiovascular events, risk stratification and treatment monitoring. The analysis identified indices that proved to be particularly sensitive and specific in different clinical contexts. Conclusion: In summary, the systematic review highlights the relevance of atherogenic indices as valuable tools in the assessment of clinical atherosclerotic diseases. The diversity of these indices and their ability to provide comprehensive information highlights their importance in clinical practice, contributing to a more refined and personalized approach to the management of these conditions.
Referências
Araújo YB, Almeida ABR, Viana MFM, Meneguz-Moreno RA. Use of Atherogenic Indices as Assessment Methods of Clinical Atherosclerotic Diseases. Arq Bras Cardiol. 2023 Dec;120(12):e20230418. Portuguese, English. doi: 10.36660/abc.20230418.
Matsuzawa Y, Lerman A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron Artery Dis. 2014 Dec;25(8):713-24. doi: 10.1097/MCA.0000000000000178.
Athinarayanan SJ, Hallberg SJ, McKenzie AL, Lechner K, King S, McCarter JP, Volek JS, Phinney SD, Krauss RM. Impact of a 2-year trial of nutritional ketosis on indices of cardiovascular disease risk in patients with type 2 diabetes. Cardiovasc Diabetol. 2020 Dec 8;19(1):208. doi: 10.1186/s12933-020-01178-2.
Guerreiro GTS, Longo L, Fonseca MA, de Souza VEG, Álvares-da-Silva MR. Does the risk of cardiovascular events differ between biopsy-proven NAFLD and MAFLD? Hepatol Int. 2021 Apr;15(2):380-391. doi: 10.1007/s12072-021-10157-y.
Fabregat-Andrés Ó, Pérez-de-Lucía P, Vallejo-García VE, Vera-Ivars P, Valverde-Navarro AA, Tormos JM. New atherogenic index for the prediction of carotid atherosclerosis based on the non-ultrasensitive c-reactive protein/HDL ratio. Clin Investig Arterioscler. 2023 Aug 23:S0214-9168(23)00070-0. English, Spanish. doi: 10.1016/j.arteri.2023.07.002.
Wang H, Zhang W, Wan J, Liu W, Yu B, Jin Q, Guan M. Microchip-based human serum atherogenic lipoprotein profile analysis. Anal Biochem. 2014 Dec 15;467:75-83. doi: 10.1016/j.ab.2014.08.031.
Vassalle C, Botto N, Andreassi MG, Berti S, Biagini A. Evidence for enhanced 8-isoprostane plasma levels, as index of oxidative stress in vivo, in patients with coronary artery disease. Coron Artery Dis. 2003 May;14(3):213-8. doi: 10.1097/01.mca.0000063504.13456.c3.
Kuchta A, Strzelecki A, Ćwiklińska A, Gruchała M, Zdrojewski Z, Kortas-Stempak B, Wieczorek E, Gliwińska A, Dąbkowski K, Jankowski M. HDL subpopulations containing apoA-I without apoA-II (LpA-I) in patients with angiographically proves coronary artery disease. J Cardiol. 2017 Mar;69(3):523-528. doi: 10.1016/j.jjcc.2016.04.007.
Chang TI, Lee UK, Zeidler MR, Liu SY, Polanco JC, Friedlander AH. Severity of Obstructive Sleep Apnea Is Positively Associated With the Presence of Carotid Artery Atheromas. J Oral Maxillofac Surg. 2019 Jan;77(1):93-99. doi: 10.1016/j.joms.2018.08.004.
Friedlander AH, Lee UK, Polanco JC, Tran HA, Chang TI, Redman RS. Positive Association Between Neutrophil-Lymphocyte Ratio and Presence of Panoramically Imaged Carotid Atheromas Among Men. J Oral Maxillofac Surg. 2019 Feb;77(2):321-327. doi: 10.1016/j.joms.2018.09.038.
Negro Silva LF, Makhani K, Lemaire M, Lemarié CA, Plourde D, Bolt AM, Chiavatti C, Bohle DS, Lehoux S, Goldberg MS, Mann KK. Sex-Specific Effects of Prenatal and Early Life Inorganic and Methylated Arsenic Exposure on Atherosclerotic Plaque Development and Composition in Adult ApoE-/- Mice. Environ Health Perspect. 2021 May;129(5):57008. doi: 10.1289/EHP8171.
Fagerberg B, Kjelldahl J, Sallsten G, Barregard L, Forsgard N, Österberg K, Hultén LM, Bergström G. Cadmium exposure as measured in blood in relation to macrophage density in symptomatic atherosclerotic plaques from human carotid artery. Atherosclerosis. 2016 Jun;249:209-14. doi: 10.1016/j.atherosclerosis.2016.01.011.
McGraw KE, Schilling K, Glabonjat RA, Galvez-Fernandez M, Domingo-Relloso A, Martinez-Morata I, Jones MR, Post WS, Kaufman J, Tellez-Plaza M, Valeri L, Brown ER, Kronmal RA, Barr GR, Shea S, Navas-Acien A, Sanchez TR. Urinary Metal Levels and Coronary Artery Calcification: Longitudinal Evidence in the Multi-Ethnic Study of Atherosclerosis (MESA). medRxiv [Preprint]. 2023 Nov 1:2023.10.31.23297878. doi: 10.1101/2023.10.31.23297878.
Sánchez E, Betriu À, Yeramian A, Fernández E, Purroy F, Sánchez-de-la-Torre M, Pamplona R, Miquel E, Kerkeni M, Hernández C, Simó R, Lecube A; ILERVAS project; ILERVAS Project:; Hernández M, Rius F, Polanco D, Barbé F, Torres G, Suárez G, Portero-Otin M, Jové M, Colàs-Campàs L, Benabdelhak I, Farràs C, Ortega M, Manuel Valdivielso J, Bermúdez-López M, Martínez -Alonso M. Skin Autofluorescence Measurement in Subclinical Atheromatous Disease: Results from the ILERVAS Project. J Atheroscler Thromb. 2019 Oct 1;26(10):879-889. doi: 10.5551/jat.47498.
Burnett MS, Durrani S, Stabile E, Saji M, Lee CW, Kinnaird TD, Hoffman EP, Epstein SE. Murine cytomegalovirus infection increases aortic expression of proatherosclerotic genes. Circulation. 2004 Feb 24;109(7):893-7. doi: 10.1161/01.CIR.0000112585.47513.45.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Cristiana Daniela de Souza , Jim Davis de Oliveira , Julia Ferreira Junqueira , Gabriel Raizama Obeid , Luana Lopes Andrade , Anthony Yuri Viana Pitanga , Admilson Barbosa Queiros , Isadora Bueno Moraes Boaventura , Bruna Martins Ribeiro , Charles Correa Gomes , Lara Hiorrana de Souza Nascimento , Karen Cristtine Araujo Barbosa